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ABSTRACT — Robotics has incessantly pervaded the world of industrial automation. As a subject, it 

has become indispensable in the academic and research curriculum. The various concepts relating 

to robot kinematics, dynamics, motion planning, etc., are often incomprehensible to beginners due to 

the abstruse underlying mathematics. Several robotics learning software have sprung up to reduce 

the learning curve. RoboAnalyzer is one such 3D model based robotics learning software primarily 

focussed on serial robot analysis based on DH (Denavit-Hartenberg) convention of robot geometry. 

A comprehensive description of the software functionalities and features is available online. This 

paper reports a further development of RoboAnalyzer in the form of addition of inverse kinematics 

of a generic 6R serial manipulator to the existing Inverse Kinematics module of the software. 

1 Introduction 

Inverse kinematics is quintessential to the control of robots. The desired task is often prescribed in terms of the 

end-effector coordinates in the Cartesian space and needs to be translated to the joint-space coordinates. This is 

precisely the problem of inverse kinematics. The first documented effort to solve for the inverse kinematics of a 

6R manipulator was by Pieper [1]. He gave closed-form solutions for manipulators where three consecutive axes 

were concurrent. For general 6R manipulators, he proposed iterative numerical techniques and was able to set 

upper bounds for the number of solutions using an elimination strategy. Roth et al. [2] used synthetic arguments 

to give a non-constructive proof of an upper bound of 32 on the number of solutions to this problem. Albala and 

Angeles [3] gave the first constructive solution to this problem as a 12 × 12 determinant whose entries were 

quartic polynomials in the half-tangent of one of the joint variables. This method of constructing a monic 

polynomial in the half-tangent of one of the joint angles is called the lower dimensional approach. Duffy and 

Crane [4] combined spherical trigonometry and dialytic elimination to obtain a 32-degree polynomial in the half-

tangent of a joint variable and found that the polynomial always yielded extraneous roots. Later on, Tsai and 

Morgan [5] took recourse to higher dimensional approach. Eight second degree equations were solved 

numerically using polynomial homotopy continuation to yield a maximum of 16 solutions for various 6R 

manipulators. This led them to conjecture that the problem has at most 16 solutions. Lee and Liang [6] gave the 

exact solution in lower dimensions. They obtained a 16-degree polynomial in the half-tangent of a joint variable 

through dialytic elimination, thus confirming the conjecture of Tsai and Morgan. Later, Raghavan and Roth [7] 

gave a simpler procedure than the one formulated by Lee and Liang using the properties of the polynomial ideal 

of the multivariate equations. However, the process of expanding a symbolic determinant to get the 16-degree 

polynomial is slow and the problem of computing roots of such polynomials can be ill-conditioned. Manocha and 

Canny [8] reduced the problem of computing the matrix determinant as a monic polynomial to finding the 

eigenvalues of a matrix. Backward stable algorithms and fast implementations for eigen decomposition greatly 

enhances the efficiency and numerical stability of the solution procedure. 
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Till recently, RoboAnalyzer was able to solve for the inverse kinematics of a 6R wrist-partition robot using 

the methodology described in [9]. Precisely, the robot architecture permitted a decoupling solution strategy- 

positioning with the articulated arm (first 3 revolute joints) and orientation using the wrist (last 3 intersecting 

revolute joints) or the spherical joint. However in the presence of wrist offsets, this method fails. Most industrial 

6R manipulators have this structure. However, errors in manufacturing and assembly necessitate kinematic 

identification followed by calibration and compensation. A general 6R inverse kinematic solution procedure will 

definitely eliminate the need for compensation. 

Manocha’s code was real-time and met industrial level of performance. It was available open-source in Linux 

environment. This inverse kinematics routine could enhance the capabilities of RoboAnalyzer software. A detailed 

description of the existing software functionalities and features is available in [10]. To incorporate in 

RoboAnalyzer, Manocha’s code had to be ported to MS-Windows platform. Section 2 of this paper recapitulates 

the formulation strategy proposed by Raghavan and Roth [7]. Their solution to the inverse kinematics problem 

had certain shortcomings which were later addressed by Manocha and Canny [8], which is also discussed in a 

subsection. Section 3 deals with a numerical example and the results from RoboAnalyzer software demonstrating 

successful integration of the code with RoboAnalyzer. 

2 Inverse Kinematics 

The determination of the joint angles required to reach desired end-effector position and orientation is inverse 

kinematics. For serial robots, inverse kinematics usually has multiple solutions and hence care has to be taken on 

how to derive it. In this section, an overview of the inverse kinematics formulation, used in this paper, is provided. 

2.1 Problem Formulation 

The standard Denavit-Hartenberg (DH) convention has been used to model the 6R manipulator (R: Revolute). 

The links are numbered from 0 to 6 and are connected by 6 joints, as shown in Fig. 1. Joint i connects link i-1 to 

link i. The ith coordinate system is attached to the end of the (i-1)th link.  

 

Fig. 1 Serial 6R manipulator 

 

The 4 × 4 homogeneous transformation matrix relating coordinate systems i+1 and i is: 

 𝐓𝑖 = [

𝑐𝑖

𝑠𝑖

0
0

−𝑠𝑖𝜆𝑖

𝑐𝑖𝜆𝑖
𝜇𝑖

0

𝑠𝑖𝜇𝑖

−𝑐𝑖𝜇𝑖

𝜆𝑖

0

𝑎𝑖𝑐𝑖

𝑎𝑖𝑠𝑖

𝑏𝑖

1

] (1) 
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where 

𝑠𝑖 = 𝑠𝑖𝑛𝜃𝑖, 𝑐𝑖 = 𝑐𝑜𝑠𝜃𝑖, 𝜃𝑖 is the ith joint angle,  

𝜇𝑖 = 𝑠𝑖𝑛𝛼𝑖, 𝜆𝑖 = 𝑐𝑜𝑠𝛼𝑖, 𝛼𝑖 is the twist angle between the joint axes i and i+1,  

𝑎𝑖 is the link length of link i and 𝑏𝑖 is the corresponding joint offset. 

For the 6R manipulator with revolute joints, ai’s,bi’s, 𝜇i’s and 𝜆i’s are known. For the inverse kinematics 

problem, we are given the pose, consisting of both position and orientation, of the end-effector (EE) as: 

 𝐓𝐸𝐸 = [

𝑙𝑥
𝑙𝑦
𝑙𝑧
0

𝑚𝑥

𝑚𝑦

𝑚𝑧

0

𝑛𝑥

𝑛𝑦

𝑛𝑧

0

𝑝𝑥

𝑝𝑦

𝑝𝑧

1

] (2) 

We are required to compute the joint angles 𝜃1,  𝜃2,  𝜃3,  𝜃4, 𝜃5 and 𝜃6 such that 

 𝐓1𝐓2𝐓3𝐓4𝐓5𝐓6 = 𝐓𝐸𝐸 (3)  

2.2 Raghavan and Roth Solution [7] 

Raghavan and Roth rearranged the matrix equation (3) as: 

 𝐓3𝐓4𝐓5 = 𝐓2
−1𝐓1

−1𝐓𝐸𝐸𝐓6
−1 (4) 

The left hand side matrix has entries which are functions of 𝜃3,  𝜃4 and 𝜃5. Similarly, the right hand side matrix 

has entries which are functions of 𝜃1,  𝜃2 and 𝜃6. Moreover, the columns 3 and 4 of the right hand side are devoid 

of 𝜃6. Comparing the entries of column 3 on both sides yields 3 scalar equations, namely                           𝐩 =
[𝑝1, 𝑝2, 𝑝3]

𝑇. Similarly, comparison of column 4 entries gave 𝐥 = [𝑙1, 𝑙2, 𝑙3]
𝑇. Raghavan and Roth studied the 

properties of the Ideal generated by 𝐩 and 𝐥 and found that the left and right hand sides of the following equations 

have the same power products as the left and right sides of 𝑝𝑖 and 𝑙𝑖: 

 𝐩. 𝐩, 𝐩. 𝐥, 𝐩 × 𝐥, (𝐩. 𝐩)𝐥 − 𝟐(𝐩. 𝐥)𝐩 (5)  

The above combinations along with 𝐩 and 𝐥 yield 14 scalar equations which can be arranged in matrix form as: 

 𝐐

[
 
 
 
 
 
 
 
𝑠1𝑠2

𝑠1𝑐2

𝑐1𝑠2
𝑐1𝑐2

𝑠1
𝑐1

𝑠2

𝑐2 ]
 
 
 
 
 
 
 

= 𝐏

[
 
 
 
 
 
 
 
𝑠4𝑠5

𝑠4𝑐5

𝑐4𝑠5
𝑐4𝑐5

𝑠4
𝑐4

𝑠5
𝑐5

1 ]
 
 
 
 
 
 
 

 (6) 

where 𝐐 is a 14 × 8 matrix whose entries are all constants. 𝐏 is a 14 × 9 matrix whose entries are linear functions 

of 𝑠3 and 𝑐3. Raghavan and Roth used 8 of the 14 equations in Eq. (6) to eliminate the left hand side power product 

terms in terms of the right hand side terms. Consequently, they obtained the following relation: 



4 

 

 𝚺

[
 
 
 
 
 
 
 
𝑠4𝑠5

𝑠4𝑐5

𝑐4𝑠5
𝑐4𝑐5

𝑠4
𝑐4

𝑠5
𝑐5

1 ]
 
 
 
 
 
 
 

= 𝟎 (7) 

where 𝚺 is a 6 × 9 matrix whose entries are linear combinations of 𝑠3, 𝑐3 and 1.  Further simplification was done 

by substituting 

𝑠3 =
2𝑥3

1+𝑥3
2, 𝑐3 =

1−𝑥3
2

1+𝑥3
2, 𝑠4 =

2𝑥4

1+𝑥4
2, 𝑐3 =

1−𝑥4
2

1+𝑥4
2, 𝑠5 =

2𝑥5

1+𝑥5
2, 𝑐5 =

1−𝑥5
2

1+𝑥5
2 

where 𝑥3 = 𝑡𝑎𝑛 (
𝜃3

2⁄ ), 𝑥4 = 𝑡𝑎𝑛 (
𝜃4

2⁄ ) and 𝑥5 = 𝑡𝑎𝑛 (
𝜃5

2⁄ ). Subsequently, Eq. (7) was multiplied by 

(1 + 𝑥3)
2, (1 + 𝑥4)

2 and (1 + 𝑥5)
2 to clear out the denominators and resulted in the following equation: 

 𝚺′

[
 
 
 
 
 
 
 
 
 
𝑥4

2𝑥5
2

𝑥4
2𝑥5

𝑥4
2

𝑥4𝑥5
2

𝑥4𝑥5
𝑥4

𝑥5
2

𝑥5

1 ]
 
 
 
 
 
 
 
 
 

= 𝟎 (8) 

where 𝚺′ is a 6 × 9 matrix whose entries are quadratic polynomials in 𝑥3. Equation (8) is not a square system. It 

is converted in to one by using dialytic elimination to yield 

 [𝚺′ 𝟎
𝟎 𝚺′

]

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑥4

3𝑥5
2

𝑥4
3𝑥5

𝑥4
3

𝑥4
2𝑥5

2

𝑥4
2𝑥5

𝑥4
2

𝑥4𝑥5
2

𝑥4𝑥5
𝑥4

𝑥5
2

𝑥5

1 ]
 
 
 
 
 
 
 
 
 
 
 
 

= 𝟎 (9) 

The above equation is overconstrained and the coefficient matrix must be singular for the system to have non-

trivial solution. The determinant of the coeficient matrix is a polynomial of degree 24 in 𝑥3. However, Raghavan 

and Roth proved that (1 + 𝑥3
2)4 exactly divides the determinant. Factoring out the term gives residual polynomial 

of degree 16 in 𝑥3. The roots of this polynomial give the values of 𝑥3 corrresponding to the 16 solutions of the 

inverse kinematics problem.  
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2.3 Problems in Raghavan and Roth Solution Procedure 

Many properties of the ideal generated by 𝐩 and 𝐥 may be violated due to floating point computatition. The 

expanded form of the determinant in Eq. (9) may not be exactly divisible by (1 + 𝑥3
2)4. Finally, root computation 

of polynomials of degree 16 can be ill-conditioned. Needless to mention that symbolic expansión of the 

determinant of the coefficient matrix in Eq. (9) is not congenial for real time performance.  

2.4 Reduction to Eigenvalue Problem by Manocha and Canny 

Manocha and Canny reduced the problem of root finding to an eigenvalue problem. The 12 × 12 coefficient 

matrix in Eq. (9) was expressed as 

 𝚺′′ ≡ [𝚺′ 𝟎
𝟎 𝚺′

] = 𝐀𝑥3
2 + 𝐁𝑥3 + 𝐂 (10)  

where A, B and C are 12 × 12 matrices consisting  of constant entries. When the matrix A is well-conditioned, 

Eq. (10) can be premultiplied by 𝐀−1 to yield 

 �̅�′′ = 𝐈𝑥3
2 + 𝐀−1𝐁𝑥3 + 𝐀−1𝐂 (11)  

where 𝐈 is a 12 × 12 identity matrix. 𝐀−1𝐁 and 𝐀−1𝐂 are computed by linear equation solvers. From the rules of 

linear algebra, Manocha and Canny created a matrix M defined as: 

 𝐌 ≡ [
𝟎 𝐈

−𝐀−1𝐂 −𝐀−1𝐁
] (12)  

such that the eigenvalues of M correspond exactly to the roots of det(𝚺′′) = 0. The eigenvectors of M 

corresponding to eigenvalue 𝑥3 have the structure 

 𝐕 = [
𝐯

𝑥3𝐯
] (13)  

where v is the vector corresponding to the variables appearing in Eq. (9). In case, the matrix A is ill-conditioned,  

the problem is reduced to a generalized eigenvalue problem by constructing two matrices M1 and M2 defined as 

 𝐌1 ≡ [
𝐈 𝟎
𝟎 𝐀

], 𝐌2 ≡ [
𝟎 𝐈

−𝐂 −𝐁
] (14)  

Furthermore, the roots of det(𝚺′′) = 0 correspond to the eigenvalues of the generalized eigenvalue problem 𝐌1 −

𝑥3𝐌2. The eigenvectors remain the same as in Eq. (13). The details of the process are omitted here to avoid 

obscuring the reader. 

3 Integration in RoboAnalyzer 

The algorithm proposed by Manocha was in Linux and RoboAnalyzer software is developed for Microsoft 

Windows. Hence, there was a need to port his code to an environment that could be integrated with RoboAnalyzer 

software. The following libraries or activities were required to develop the ported program as Generic 6R.exe. 

 EISPACK and LAPACK routines for matrix operations were interlaced with C programs which were 

based on Manocha’s implementation.  

 MinGW (Minimalist GNU for Windows) was used to get rid of dependencies [11]. MinGW provides a 

complete open source programming tool set- a port of the GNU Compiler Collection (GCC), including C, 

C++, ADA and Fortran compilers. 

 GNU Binutils for Windows (assembler, linker, archive manager)- which is suitable for the development 

of native MS-Windows applications, and does not depend on any 3rd-party C-Runtime DLLs. It depends 

on a number of Microsoft DLLs provided as components of the operating system.  
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RoboAnalyzer already had an Inverse Kinematics (IKin) module which could solve for standard robot 

architecture for which closed-form solution exists. These are reported in [12]. To integrate the new generic IKin 

6R program, a new entry was added in the list of robots. Upon selecting it, an user interface for input of the DH 

parameters of the generic 6R robot along with the desired end-effector pose is shown to the user. Once the user 

provides the input values, RoboAnalyzer writes these data in a pre-determined file structure for the 6R generic 

program to read. The program (Generic6R.exe) then executes the ported version of formulation explained in 

Section 2, and writes the output in a file. The output file is then read by RoboAnalyzer IKin module and displays 

the possible solutions. These steps are illustrated in Fig. 2.  

Fig. 2 Integration of RoboAnalyzer IKin module and Generic6R application 

4 Numerical Example 

The implementation proposed in this paper has been tested for various robot configurations which do not have a 

wrist-partitioned architecture. An example is shown here for illustration. The matrix defining the pose of the end-

effector, used as input is 

 𝐓𝐸𝐸 = [

−0.357279
0.915644

−0.184246
0

−0.85
−0.237

0.470458
0

0.387106
0.324694
0.862973

0

0.798811
−0.000331
1.200658

1

]  

The DH parameters of the 6R manipulator for the example is 

 

Sl. no. Link Length Offset Distance Twist Angle 

i 𝑎𝑖 𝑏𝑖 𝛼𝑖 

1 0.1348 0 -57 

2 1.9773 0.9999 35 

3 0.0786 0.2809 95 

4 0.9887 -0.4831 79 

5 0.4382 0.5617 -75 

6 1.0448 -1.5054 -90 

Tab. 1: DH parameters of a generic 6R manipulator 

RoboAnalyzer IKin Module 

 User inputs DH parameters of Generic 6R 

manipulator 

 User inputs desired EE configuration 

 Software writes the input parameters in a 

text file and calls Generic6R.exe  

Generic6R.exe application 

 Reads the input file 

 Determines the possible inverse 

kinematics solutions 

 If desired configuration is beyond 

workspace, no solutions exists 

 Solutions are written in a file 

 Reads inverse kinematics solutions 

 Populates solutions in IKin module 

 User selects a solution and the robot model 

is shown for the selected solution 

 Multiple solutions can be easily visualized 
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These data were passed on to Generic6R.exe application which determined 16 possible solutions. The IKin module 

of RoboAnalyzer with 16 possible solutions is shown in Fig. 3. The solution selected by the user will be shown to 

the end-user in the main RoboAnalyzer application.  

The main RoboAnalyzer application also has a forward kinematics implementation that shows the 

homogeneous transformation matrix of the end-effector for the given DH parameters and joint angles. This matrix 

can be used to verify whether the input for IKin was obtained correctly or not. Thus, integration with 

RoboAnalyzer provides a faster and easier way to verify the solutions obtained in the 6RGeneric solver 

implemented in this paper. Figure 4 shows all the 16 solutions as viewed in the main RoboAnalyzer application. 

Note that these solutions can be shown one at a time and for the sake of comparison, they have been put as a single 

figure. 

 

Fig. 3 Inverse Kinematics (IKin) module in RoboAnalyzer for general 6R manipulator 

5 Conclusions 

Inverse kinematics of serial robots has always been a complicated topic due to various challenges. One such is 

that equations should exist in closed form to solve it analytically. A methodology proposed by Manoha and Canny 

for the solution of inverse kinematics of a generic 6R manipulator was ported to Windows as an application. It 

was then integrated with RoboAnalyzer, a 3D model based robotics learning software, developed by the authors. 

The integration has resulted in an easy way to visualize and validate the 16 solutions possible for a generic 6R 

manipulator. To widen the use of the software, it has been made available free through 

http://www.roboanalyzer.com. 
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Fig. 4 3D representation of the 16 distinct inverse kinematic solutions 
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