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Abstract 

Industrial robots are used extensively in manufacturing units for various tasks. Most of the robot manufacturers provide software 
for offline and online programming of robots, but they are usually sold separately. Few robot manufacturers do not have a dedicated 
simulation software for their robots. In this paper, a methodology to create CAD model of an existing physical robot is described 
by taking the example of Nex Dexter 5-axis robotic manipulator. Later, the Denavit-Hartenberg (DH) parameters were extracted 
using a methodology reported elsewhere. By using the DH parameters, few CAD files were exported. A Teach Pendant Application 
has been developed using Visual C# that can connect to Virtual Robot Module of RoboAnalyzer for visualization of robot motion. 
The kinematic analysis of the robot was formulated for joint and Cartesian motion of the robot. The application was then integrated 
with the physical Nex Dexter robotic manipulator. Hence, robot motion intended for the robot is first tested in simulation 
environment and once it is found suitable, motion of the actual robot takes place. The methodology proposed is generic and can be 
used to simulate any robotic manipulator. 
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1. Introduction 

Robots are primarily classified as mobile and fixed base robots. Mobile robots have a base that moves either on 
land, water or air whereas fixed base robots have one of its parts fixed to ground. Fixed base robots are further classified 
as serial systems, parallel systems and also as tree type systems, which is a combination of the former two. Parallel 
robots generally have a moving platform that can have a tool or object. Though parallel robots have better rigidity and 
accuracy, they have smaller workspaces and are subject to interlocking of the robot links. On the other hand, serial 
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robots have larger workspaces though they are less accurate. In industries, serial robots are used more extensively and 
are referred to as industrial manipulators. 

Industrial robots or manipulators are generally used to perform tasks such as assembly, grinding, pick and place, 
painting, welding, etc. The robots are expected to perform the tasks in Cartesian space where as they are controlled in 
their joint space. Hence, a mathematical model correlating the joint motion and the motion of the end-effector, the last 
link of the robot, has to be known to achieve desired robot motion. The mathematic model, known as kinematic model, 
is generally derived using the defacto standard Denavit-Hartenberg (DH) parameters. Hence, for a given robot, one 
should know its DH parameters before proceeding ahead with its kinematic analysis and motion. 

Robots are used in environments with static and dynamic obstacles. Also, if the motion of the robot is checked in a 
simulation software before being programmed on an actual robot, the efforts and time will be reduced significantly. 
Also, simulation can avoid any possible damage of the physical robot. Hence, a simulation software for a robot is of 
great importance. Robot simulation software are broadly classified into offline and online simulation. In the former, 
the CAD model of robot and its workcell is shown to the user. Any robot motion in the form of joint and Cartesian 
jogging can be provided as input and the 3D CAD model of the robot arm moves. Once the desired motion is achieved, 
the robot motion or the program can be sent to actual robot controller. During the simulation, the actual robot is not 
disturbed and hence robot’s productivity is not affected during the simulation. However, any dynamic obstacles in the 
workcell can not be identified and accordingly alter robot motion, which is done in online simulation. Hence, for 
environments with dynamic objects such as a human co-worker or for multiple robots sharing common workspace, 
online simulation should be performed. 

Several robot simulation software exist which allow offline and online simulation of robots. Some of the 
commercial ones include ABB RobotStudio, KUKA Sim Pro, RoboDK library, Visual Components, etc. A few free 
or opensource alternatives exist such as ROBOMOSP[1], V-REP, etc. Another such software is RoboAnalyzer[2], a 
3D model based robotics learning software which is available for free, co-developed by the third author. It has several 
modules related to forward kinematics, inverse kinematics, inverse and forward dynamics, and Cartesian motion 
planning of serial robots. Its Virtual Robot Module (VRM) has CAD models of more than 20 industrial robots and can 
perform joint and Cartesian motion on them. The architecture of VRM is kept such that newer models of robots can 
be added with ease and simulated readily. RoboAnalyzer software has several advantages and a few disadvantages 
over other similar software, as reported in [2]. Due to space restrictions, they have not been listed down here. 

In this paper, a methodology for the development of offline and online simulation software for a custom robot is 
proposed. These methodology would help a robot manufacturer to use RoboAnalyzer platform to develop a custom 
robot simulation software. Section 2 explains the steps to be followed in the modeling of 3D CAD assembly of a 
physical robot, Nex Dexter 5-axis robotic manipulator in this case. In Section 3, the methodology to determine or 
extract the DH parameters from the CAD model of a robot and preparation of 3D models for simulation software are 
presented. Thereafter, the formulations for the kinematic analysis of the robot is described in Section 4. A client 
application, acting as an online simulation software, is presented in Section 5 followed by the conclusions. 

2. Modeling of 3D CAD Assembly of Robot 

The CAD assembly files of industrial robots from standard robot manufacturers such as ABB, Fanuc, KUKA, etc., are 
generally available in the respective manufacturer’s website and can be used to import in Virtual Robot Module after 
making certain modifications. However if the CAD model of a robot is not available, the model has to be developed 
manually by the end-user. One such robot that has been taken as an example in this paper is Nex Dexter 5-axis robotic 
manipulator, shown in Fig. 1(a). The methodology proposed in this paper is generic and any physical robot can be 
modeled and simulated in VRM. The steps followed in modeling of CAD assembly of the robots are below: 
 Measure the important dimensions of each robot link 
 Model each robot link as a CAD part in Autodesk Inventor software. Any other CAD software can also be used 

for modeling. However, certain steps followed in this this methodology have to be executed manually in the other 
software. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.07.101&domain=pdf
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are referred to as industrial manipulators. 
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painting, welding, etc. The robots are expected to perform the tasks in Cartesian space where as they are controlled in 
their joint space. Hence, a mathematical model correlating the joint motion and the motion of the end-effector, the last 
link of the robot, has to be known to achieve desired robot motion. The mathematic model, known as kinematic model, 
is generally derived using the defacto standard Denavit-Hartenberg (DH) parameters. Hence, for a given robot, one 
should know its DH parameters before proceeding ahead with its kinematic analysis and motion. 

Robots are used in environments with static and dynamic obstacles. Also, if the motion of the robot is checked in a 
simulation software before being programmed on an actual robot, the efforts and time will be reduced significantly. 
Also, simulation can avoid any possible damage of the physical robot. Hence, a simulation software for a robot is of 
great importance. Robot simulation software are broadly classified into offline and online simulation. In the former, 
the CAD model of robot and its workcell is shown to the user. Any robot motion in the form of joint and Cartesian 
jogging can be provided as input and the 3D CAD model of the robot arm moves. Once the desired motion is achieved, 
the robot motion or the program can be sent to actual robot controller. During the simulation, the actual robot is not 
disturbed and hence robot’s productivity is not affected during the simulation. However, any dynamic obstacles in the 
workcell can not be identified and accordingly alter robot motion, which is done in online simulation. Hence, for 
environments with dynamic objects such as a human co-worker or for multiple robots sharing common workspace, 
online simulation should be performed. 

Several robot simulation software exist which allow offline and online simulation of robots. Some of the 
commercial ones include ABB RobotStudio, KUKA Sim Pro, RoboDK library, Visual Components, etc. A few free 
or opensource alternatives exist such as ROBOMOSP[1], V-REP, etc. Another such software is RoboAnalyzer[2], a 
3D model based robotics learning software which is available for free, co-developed by the third author. It has several 
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planning of serial robots. Its Virtual Robot Module (VRM) has CAD models of more than 20 industrial robots and can 
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be added with ease and simulated readily. RoboAnalyzer software has several advantages and a few disadvantages 
over other similar software, as reported in [2]. Due to space restrictions, they have not been listed down here. 

In this paper, a methodology for the development of offline and online simulation software for a custom robot is 
proposed. These methodology would help a robot manufacturer to use RoboAnalyzer platform to develop a custom 
robot simulation software. Section 2 explains the steps to be followed in the modeling of 3D CAD assembly of a 
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presented. Thereafter, the formulations for the kinematic analysis of the robot is described in Section 4. A client 
application, acting as an online simulation software, is presented in Section 5 followed by the conclusions. 

2. Modeling of 3D CAD Assembly of Robot 

The CAD assembly files of industrial robots from standard robot manufacturers such as ABB, Fanuc, KUKA, etc., are 
generally available in the respective manufacturer’s website and can be used to import in Virtual Robot Module after 
making certain modifications. However if the CAD model of a robot is not available, the model has to be developed 
manually by the end-user. One such robot that has been taken as an example in this paper is Nex Dexter 5-axis robotic 
manipulator, shown in Fig. 1(a). The methodology proposed in this paper is generic and any physical robot can be 
modeled and simulated in VRM. The steps followed in modeling of CAD assembly of the robots are below: 
 Measure the important dimensions of each robot link 
 Model each robot link as a CAD part in Autodesk Inventor software. Any other CAD software can also be used 

for modeling. However, certain steps followed in this this methodology have to be executed manually in the other 
software. 
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 Measure the distance between consecutive joint axes. These dimensions find their way in the DH parameters of 
the robot, which are determined at a later stage. The measured dimensions should be validated with the DH 
parameters found. 

 Insert the CAD part of each link in Autodesk Inventor CAD assembly. The base part (Link 0) should be placed 
such that the bottom plane of the component is on the Assembly XY plane and the first joint axis is along the 
Assembly Z axis. 

 Define revolute joints (Insert Constraint) between the consecutive robot links. While defining the constraints 
between the robot parts, the first part to be selected should always be the link that is towards the base part and 
the second selection should be the part towards the last link (end-effector). For example, if Insert Constraint 1 is 
to be created, the first selection should be base part (Link 0) and the second selection should be Link 1.  

 Place a UCS (User Coordinate System), a marker to represent X, Y and Z axes of a coordinate system, inside the 
end-effector link. The UCS added should be such that its Z axis is parallel to the direction of the last joint axis. 
Also the origin of the UCS should be located at the center of the gripper or any tool at the end-effector, typically 
known as TCP (Tool Center Point).  

 
The CAD assembly of the given robot in Autodesk Inventor software is shown in Fig. 1(b). The assembly should 

have only n+1 parts (n=degree-of-freedom or the number of joint axes) and have only n Insert Constraints. These 
Insert Constraints should also be defined from the base link to the end-effector. Any change in the order will fail the 
DH parameters extraction methodology explained in the next section. 

Fig. 1. Nex Dexter 5-axis robot arm 

3. DH Parameters of Robot 

The Denavit-Hartenberg (DH) parameters are generally used to represent a robot architecture. For the sake of 
completeness of the paper, a very brief explanation of the DH parameters is given below.  

A line can be represented in a 3D coordinate system in various ways. One way is to represent it as position vectors 
(𝒑𝒑𝟏𝟏and 𝒑𝒑𝟐𝟐) of two points (𝑃𝑃1 and 𝑃𝑃2) on the line, requiring a total of 6 coordinates, as illustrated in Fig. 2(a). Another 
way is to represent using position vector (𝒑𝒑) of any point (𝑃𝑃) on the line and another unit vector (𝒆𝒆) to represent the 
direction of the line which also requires a total of 6 parameters, as shown in Fig. 2(b). Denavit and Hartenberg [3] 
proposed that a line can be represented using just four parameters.  

If a common normal is drawn between the Z axis of the coordinate system (𝑋𝑋1𝑌𝑌1𝑍𝑍1) and the line, it would intersect 
at two points 𝑂𝑂1

′  and 𝑂𝑂1
′′ , as shown in Fig. 2(c). They proposed four parameters required to reach the line from 

coordinate system. Actually, the proposal was for open-loop and closed-loop mechanisms. If a coordinate system is 
known on a link and the axis of the next joint is represented as a line, four parameters are required to go from the 
coordinate system to the line. Once the line is reached, a new coordinate system is formed on the next link and the 
subsequent joint axis is reached using four more parameters. The new coordinate frame will have its Z axis along the 

(a) Physical model (b) CAD Assembly in Autodesk Inventor 
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joint axis, its X axis along the common normal and Y axis obtained using cross-product rule. The origin of the new 
coordinate system is at 𝑂𝑂1

′′. The four DH parameters are described briefly in Table 1. More details on the assignment 
of DH frames, with regard to serial robots, can be found in [4]. 
 

Fig. 2. Line representation with respect to a Coordinate frame 

Table 1. Denavit-Hartenberg (DH) parameters 

Parameter Description 

Joint Offset (𝑏𝑏) Linear distance from 𝑂𝑂1 to 𝑂𝑂1
′  along 𝑍𝑍1 

Joint Angle (𝜃𝜃) Angle from 𝑋𝑋1to common normal about 𝑍𝑍1 

Link length (𝑎𝑎) Linear distance from 𝑂𝑂1
′  to 𝑂𝑂1

′′ along common normal 

Twist Angle (𝜃𝜃) Angle from 𝑍𝑍1 (a line parallel to it) and the line about common normal 

3.1. DH parameters from technical drawings 

Robot manufacturers generally provide technical drawings of the robot arm in which key dimensions such as 
distance between joint axes and other information are provided. By following the steps mentioned in [4], one can 
determine the DH parameters of the robot at hand. An analytical methodology to automatically extract the DH 
parameters from a CAD model of the robot was proposed in [5], which will be followed in this paper.  

3.2. DH parameters extraction from CAD model 

To extract the DH parameters of a CAD model of robot arm, the steps followed are below: 
 Model the CAD assembly as described in Section 2 
 Start the Inventor addin 
 The addin reads the joint axes data (point on line and unit vector along the line) and determines the DH parameters 

using the methodology proposed in [5], using line geometry. 
 One UCS (User Coordinate System) is programmatically added to the CAD assembly where the DH frames are 

to be located. 
 These UCS from assembly have to be moved inside each Inventor part file, which is a required step to export the 

CAD file. 
 
The addin and the Nex Dexter CAD assembly are shown in Fig. 3(a). The DH parameters and the UCS added to 

the assembly can be seen in the figure as well. Note that the origins of Frame 4 and 5 actually coincide. For the sake 
of clarity, Frame 5 is displaced. The DH parameters extracted automatically had Z axes of Frame 2 (on Link 1) and 
Frame 3 (on Link 2) are in opposite direction. Similarly for Frame 3 and Frame 4. Manually, the UCS corresponding 
to Frame 2 and Frame 4 are flipped to have opposite Z axis as compared to their earlier direction. The modified UCS 
frames are shown in Fig. 3(b). This is done to get DH parameters which are simpler and the kinematic formulations 
become easy. The DH parameters determined by the addin after some minor modifications are given in Table 2. These 
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If a common normal is drawn between the Z axis of the coordinate system (𝑋𝑋1𝑌𝑌1𝑍𝑍1) and the line, it would intersect 
at two points 𝑂𝑂1

′  and 𝑂𝑂1
′′ , as shown in Fig. 2(c). They proposed four parameters required to reach the line from 

coordinate system. Actually, the proposal was for open-loop and closed-loop mechanisms. If a coordinate system is 
known on a link and the axis of the next joint is represented as a line, four parameters are required to go from the 
coordinate system to the line. Once the line is reached, a new coordinate system is formed on the next link and the 
subsequent joint axis is reached using four more parameters. The new coordinate frame will have its Z axis along the 

(a) Physical model (b) CAD Assembly in Autodesk Inventor 
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joint axis, its X axis along the common normal and Y axis obtained using cross-product rule. The origin of the new 
coordinate system is at 𝑂𝑂1

′′. The four DH parameters are described briefly in Table 1. More details on the assignment 
of DH frames, with regard to serial robots, can be found in [4]. 
 

Fig. 2. Line representation with respect to a Coordinate frame 

Table 1. Denavit-Hartenberg (DH) parameters 

Parameter Description 

Joint Offset (𝑏𝑏) Linear distance from 𝑂𝑂1 to 𝑂𝑂1
′  along 𝑍𝑍1 

Joint Angle (𝜃𝜃) Angle from 𝑋𝑋1to common normal about 𝑍𝑍1 

Link length (𝑎𝑎) Linear distance from 𝑂𝑂1
′  to 𝑂𝑂1

′′ along common normal 

Twist Angle (𝜃𝜃) Angle from 𝑍𝑍1 (a line parallel to it) and the line about common normal 

3.1. DH parameters from technical drawings 

Robot manufacturers generally provide technical drawings of the robot arm in which key dimensions such as 
distance between joint axes and other information are provided. By following the steps mentioned in [4], one can 
determine the DH parameters of the robot at hand. An analytical methodology to automatically extract the DH 
parameters from a CAD model of the robot was proposed in [5], which will be followed in this paper.  

3.2. DH parameters extraction from CAD model 

To extract the DH parameters of a CAD model of robot arm, the steps followed are below: 
 Model the CAD assembly as described in Section 2 
 Start the Inventor addin 
 The addin reads the joint axes data (point on line and unit vector along the line) and determines the DH parameters 

using the methodology proposed in [5], using line geometry. 
 One UCS (User Coordinate System) is programmatically added to the CAD assembly where the DH frames are 

to be located. 
 These UCS from assembly have to be moved inside each Inventor part file, which is a required step to export the 

CAD file. 
 
The addin and the Nex Dexter CAD assembly are shown in Fig. 3(a). The DH parameters and the UCS added to 

the assembly can be seen in the figure as well. Note that the origins of Frame 4 and 5 actually coincide. For the sake 
of clarity, Frame 5 is displaced. The DH parameters extracted automatically had Z axes of Frame 2 (on Link 1) and 
Frame 3 (on Link 2) are in opposite direction. Similarly for Frame 3 and Frame 4. Manually, the UCS corresponding 
to Frame 2 and Frame 4 are flipped to have opposite Z axis as compared to their earlier direction. The modified UCS 
frames are shown in Fig. 3(b). This is done to get DH parameters which are simpler and the kinematic formulations 
become easy. The DH parameters determined by the addin after some minor modifications are given in Table 2. These 
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parameters are required for the kinematic analysis and simulation of robot. Same methodology of DH parameter 
extraction can be followed for 3D CAD model of any serial robot.  
 

Fig. 3. Automatic extraction of DH parameters using [5] 

Table 2. DH parameters of Nex Dexter Robotic Arm [JV: Joint Variable] 

Joint Joint Offset (𝑏𝑏𝑖𝑖) 
(mm) 

Joint Angle (𝜃𝜃𝑖𝑖) 
(°) 

Link length (𝑎𝑎1) 

(mm) 

Twist Angle (𝛼𝛼1) 

(°) 

Joint 1 119 90 (JV) 10 90 

Joint 2 0 90 (JV) 102.5 0 

Joint 3 0 0 (JV) 82 0 

Joint 4 0 180 (JV) 0 -90 

Joint 5 179.5 0 (JV) 0 0 

3.3. Preparation of 3D Model for Simulation 

The CAD assembly with the UCS is made n+1 copies, corresponding to the n+1 robot links. Each CAD assembly 
is separately opened in Autodesk Inventor and all except one part are deleted in the assembly. For example, for Link 
2’s case, all links except Link 2 are deleted as shown in Fig. 4(a). Note that the UCS attached inside the part of Link 
2 is intact and distinct from the Assembly Origin coordinate frame. Using Inventor’s assembly constraints, the UCS 
of Link 2 is constrained with Assembly Origin coordinate frame so that they coincide. This is shown in Fig. 4(b).  

Fig. 4. Modifications in CAD assembly file for export STL files for each part file 
 

Thereafter, the assembly file is exported as STL file (ASCII format), which can then be read by RoboAnalyzer 

(b) Modified assembly file for Link 2 
Assembly Origin Frame 

DH Frame on Link 2 
Assembly Origin Frame 
and DH Frame on Link 2 

(a) Assembly for Link 2 

DH parameters extraction addin 

Frame 1 

Extracted DH Parameters 

UCS added in assembly 

Frame 2 

Frame 3 

Frame 4 

Frame 5 
Frame 6 

(a) Inventor addin and CAD assembly (b) Modified UCS for simpler DH parameters 
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software. The same steps are repeated for all the robot links. Further, RoboAnlayzer software expects custom robot 
CAD data and DH parameters data in the form of a XML file (sample can be taken from any existing robot model). 
The XML file once created using the DH parameters obtained in the previous steps can be used to load Nex Dexter. 

4. Kinematic Analysis 

Kinematic analysis of a serial robot can be classified into forward and inverse kinematics. For a given set of joint 
angles, determination of the configuration (position and orientation) of the end-effector is known as forward 
kinematics. On the other hand, for a given end-effector configuration, finding the required joint angles is known as 
inverse kinematics. For serial robots, forward kinematics is straight forward and has unique solutions but the inverse 
kinematics formulations are only possible for standard robot architecture. Also, inverse kinematics may provide 
multiple solutions and hence care is required to choose the correct solution.  

4.1. Forward kinematics 

Referring to Fig. 5(a), the forward kinematic analysis is the solution of the following equation, where 𝑇𝑇𝑖𝑖  and 
𝑇𝑇𝑒𝑒𝑒𝑒  correspond to Homogeneous Transformation Matrix (HTM) corresponding to ith Joint’s DH parameters, and that 
of the End-effector with respect to the base frame (Frame 1 on Link 0), respectively,  

 
𝑇𝑇𝑒𝑒𝑒𝑒 =  𝑇𝑇1 ∗ 𝑇𝑇2 ∗ 𝑇𝑇3 ∗ 𝑇𝑇4 ∗ 𝑇𝑇5 (1) 

 

Fig. 5. Homogeneous Transformation Matrices (HTM) for forward and inverse kinematics 

4.2. Inverse kinematics 

To obtain close form solution for inverse kinematics of the Nex Dexter robot arm, the following steps are followed.  
Equation 1 is rewritten as 

 
𝑇𝑇𝑒𝑒𝑒𝑒 =  𝑇𝑇1 ∗ [𝑇𝑇𝑒𝑒𝑒𝑒]2;  where [𝑇𝑇𝑒𝑒𝑒𝑒]2 = 𝑇𝑇2 ∗ 𝑇𝑇3 ∗ 𝑇𝑇4 ∗ 𝑇𝑇5 (2) 

 
[𝑇𝑇𝑒𝑒𝑒𝑒]2 in Equation 2 corresponds to the HTM of the EE with respect to the Frame 2, as shown in Fig. 5(b). Note that 
this expression will not have any θ1 terms in it. Also, whenever Joint 1 rotates, a plane containing the End-effector 
point always lies in the XY plane of Frame 2. This is due to the architecture of the robot. Hence, determination of 
angles of Joint 2, Joint 3 and Joint 4 becomes a planar problem, thus simplifying the calculations. [𝑇𝑇𝑒𝑒𝑒𝑒]2 can be 
determined as 

(a) Forward kinematics 
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(b) 𝑇𝑇𝑒𝑒𝑒𝑒  in Frame 1 and Frame 2 
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parameters are required for the kinematic analysis and simulation of robot. Same methodology of DH parameter 
extraction can be followed for 3D CAD model of any serial robot.  
 

Fig. 3. Automatic extraction of DH parameters using [5] 

Table 2. DH parameters of Nex Dexter Robotic Arm [JV: Joint Variable] 

Joint Joint Offset (𝑏𝑏𝑖𝑖) 
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Joint Angle (𝜃𝜃𝑖𝑖) 
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Link length (𝑎𝑎1) 
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Twist Angle (𝛼𝛼1) 

(°) 

Joint 1 119 90 (JV) 10 90 

Joint 2 0 90 (JV) 102.5 0 

Joint 3 0 0 (JV) 82 0 

Joint 4 0 180 (JV) 0 -90 

Joint 5 179.5 0 (JV) 0 0 

3.3. Preparation of 3D Model for Simulation 

The CAD assembly with the UCS is made n+1 copies, corresponding to the n+1 robot links. Each CAD assembly 
is separately opened in Autodesk Inventor and all except one part are deleted in the assembly. For example, for Link 
2’s case, all links except Link 2 are deleted as shown in Fig. 4(a). Note that the UCS attached inside the part of Link 
2 is intact and distinct from the Assembly Origin coordinate frame. Using Inventor’s assembly constraints, the UCS 
of Link 2 is constrained with Assembly Origin coordinate frame so that they coincide. This is shown in Fig. 4(b).  

Fig. 4. Modifications in CAD assembly file for export STL files for each part file 
 

Thereafter, the assembly file is exported as STL file (ASCII format), which can then be read by RoboAnalyzer 

(b) Modified assembly file for Link 2 
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(a) Inventor addin and CAD assembly (b) Modified UCS for simpler DH parameters 
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software. The same steps are repeated for all the robot links. Further, RoboAnlayzer software expects custom robot 
CAD data and DH parameters data in the form of a XML file (sample can be taken from any existing robot model). 
The XML file once created using the DH parameters obtained in the previous steps can be used to load Nex Dexter. 

4. Kinematic Analysis 

Kinematic analysis of a serial robot can be classified into forward and inverse kinematics. For a given set of joint 
angles, determination of the configuration (position and orientation) of the end-effector is known as forward 
kinematics. On the other hand, for a given end-effector configuration, finding the required joint angles is known as 
inverse kinematics. For serial robots, forward kinematics is straight forward and has unique solutions but the inverse 
kinematics formulations are only possible for standard robot architecture. Also, inverse kinematics may provide 
multiple solutions and hence care is required to choose the correct solution.  

4.1. Forward kinematics 

Referring to Fig. 5(a), the forward kinematic analysis is the solution of the following equation, where 𝑇𝑇𝑖𝑖  and 
𝑇𝑇𝑒𝑒𝑒𝑒  correspond to Homogeneous Transformation Matrix (HTM) corresponding to ith Joint’s DH parameters, and that 
of the End-effector with respect to the base frame (Frame 1 on Link 0), respectively,  

 
𝑇𝑇𝑒𝑒𝑒𝑒 =  𝑇𝑇1 ∗ 𝑇𝑇2 ∗ 𝑇𝑇3 ∗ 𝑇𝑇4 ∗ 𝑇𝑇5 (1) 

 

Fig. 5. Homogeneous Transformation Matrices (HTM) for forward and inverse kinematics 

4.2. Inverse kinematics 

To obtain close form solution for inverse kinematics of the Nex Dexter robot arm, the following steps are followed.  
Equation 1 is rewritten as 

 
𝑇𝑇𝑒𝑒𝑒𝑒 =  𝑇𝑇1 ∗ [𝑇𝑇𝑒𝑒𝑒𝑒]2;  where [𝑇𝑇𝑒𝑒𝑒𝑒]2 = 𝑇𝑇2 ∗ 𝑇𝑇3 ∗ 𝑇𝑇4 ∗ 𝑇𝑇5 (2) 

 
[𝑇𝑇𝑒𝑒𝑒𝑒]2 in Equation 2 corresponds to the HTM of the EE with respect to the Frame 2, as shown in Fig. 5(b). Note that 
this expression will not have any θ1 terms in it. Also, whenever Joint 1 rotates, a plane containing the End-effector 
point always lies in the XY plane of Frame 2. This is due to the architecture of the robot. Hence, determination of 
angles of Joint 2, Joint 3 and Joint 4 becomes a planar problem, thus simplifying the calculations. [𝑇𝑇𝑒𝑒𝑒𝑒]2 can be 
determined as 

(a) Forward kinematics 
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[𝑇𝑇𝑒𝑒𝑒𝑒]2 =  𝑇𝑇1

−1 ∗ 𝑇𝑇𝑒𝑒𝑒𝑒  (3) 
 
where 𝑇𝑇1

−1  corresponds to the HTM of Frame 1 with respect to Frame 2. Note that 𝑇𝑇1  was earlier obtained by 
multiplying four individual HTM corresponding to each of the DH parameters for Joint 1. Similarly, 𝑇𝑇1

−1 can be 
obtained by the multiplication of HTMs corresponding to the opposite sign value of each of the DH parameters and 
the order of multiplication being the opposite. The expression for 𝑇𝑇1

−1 is obtained for α1= 90° as 
 

          𝑇𝑇1
−1 =  [

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 
− 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1

  0 −𝑎𝑎1
𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1   −𝑏𝑏1 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1

 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1  −𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1
 0  0

 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1  𝑏𝑏1  𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1
0 1

]  = [
𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 

0 0   0 −𝑎𝑎1
1   −𝑏𝑏1

 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1
 0  0

0     0
0    1

]      (4) 

Note that the last column of the HTM in Equation 4 does not have a Z component, which also justifies why the end-
effector point will always remain on the XY plane of Frame 2. Let 𝐩𝐩 = [𝑃𝑃𝑥𝑥   𝑃𝑃𝑦𝑦   𝑃𝑃𝑧𝑧]

T correspond to the end-effector 
point with respect to Frame 1 and 𝐩𝐩′ =  [𝑃𝑃𝑥𝑥

′   𝑃𝑃𝑦𝑦
′   𝑃𝑃𝑧𝑧

′]T. The inverse kinematics of 5-axis Nex Dexter robot arm can 
be simplified in the following manner: 
 θ1 has only effect on 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑦𝑦 and does not influence 𝑃𝑃𝑧𝑧. By looking at the geometry, θ1 can be determined as 
 

𝜃𝜃1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠2(𝑃𝑃𝑦𝑦, 𝑃𝑃𝑧𝑧)  (5) 

 Origins of Frame 2, Frame 3, Frame 4, Frame 5 and Frame 6 always line on a plane (XY plane of Frame 2). This 
plane rotates with respect to YZ plane of Frame 1. Hence, kinematics of end-effector point in Frame 2 can be 
simplified as a planar problem. Also, the rotation of last joint (Joint 5) does not have any effect on the position 
of the end-effector in Frame 2. The expression for the end-effector point in Frame 2 (𝐩𝐩′) is given by 

                           𝒑𝒑′ =  𝑇𝑇1
−1 ∗ 𝒑𝒑 =>  

[
 
 
 𝑃𝑃𝑥𝑥

′ 
𝑃𝑃𝑦𝑦

′ 
𝑃𝑃𝑧𝑧

′ 
1 ]

 
 
 
 =  [

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 
0 0   0 −𝑎𝑎1

1   −𝑏𝑏1
 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1

 0  0
0     0
0    1

] [
𝑃𝑃𝑥𝑥 
𝑃𝑃𝑦𝑦 
𝑃𝑃𝑧𝑧 
1

]                                        (6) 

 Once 𝐩𝐩′ is determined from 𝐩𝐩 (which is the actual input for inverse kinematics), the joint angles calculations 
for θ2, θ3 and θ4 can be performed similar to a planar 3R (R: Revolute) serial robot, as derived in [4]. θ5  would 
correspond to the rotation of the last joint and can be one of the Euler angles for the end-effector configuration. 
To simplify the formulation, θ5 can be assumed some constant value.  Due to space restrictions, the complete 
inverse kinematics formulations are not included in this paper. The inverse kinematics equations were initially 
developed as a MATLAB/Octave program. The results obtained were compared with those obtained from 
RoboAnalyzer software, for the same DH parameters and input values of end-effector configuration (position 
and orientation), thus validating the formulations derived from scratch. 

5. Simulation Software for Nex Dexter 

The CAD model of Nex Dexter robot arm developed as described in Sections 2 and 3 was imported in Virtual 
Robot Module (VRM) of RoboAnalyzer. The VRM has a feature that it can integrated with other software or 
applications such as MATLAB or MS Excel and act as a visualizer for robot motion [6]. Similarly, Nex Dexter robot 
in VRM can be simulated by sending joint angles from another client application developed in C#. The client 
application has the inverse kinematics formulations derived in the previous section and has capability of performing 
joint and Cartesian jogging of the robot in the VRM. The client application also been integrated with actual Nex 
Dexter robot arm using a USB (serial communication) cable. The motion given to the VRM is also sent to the physical 
robot. The client application and VRM running on a laptop its integration with physical robot is illustrated in Fig. 6. 
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the order of multiplication being the opposite. The expression for 𝑇𝑇1

−1 is obtained for α1= 90° as 
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Note that the last column of the HTM in Equation 4 does not have a Z component, which also justifies why the end-
effector point will always remain on the XY plane of Frame 2. Let 𝐩𝐩 = [𝑃𝑃𝑥𝑥   𝑃𝑃𝑦𝑦   𝑃𝑃𝑧𝑧]

T correspond to the end-effector 
point with respect to Frame 1 and 𝐩𝐩′ =  [𝑃𝑃𝑥𝑥

′   𝑃𝑃𝑦𝑦
′   𝑃𝑃𝑧𝑧

′]T. The inverse kinematics of 5-axis Nex Dexter robot arm can 
be simplified in the following manner: 
 θ1 has only effect on 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑦𝑦 and does not influence 𝑃𝑃𝑧𝑧. By looking at the geometry, θ1 can be determined as 
 

𝜃𝜃1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠2(𝑃𝑃𝑦𝑦, 𝑃𝑃𝑧𝑧)  (5) 

 Origins of Frame 2, Frame 3, Frame 4, Frame 5 and Frame 6 always line on a plane (XY plane of Frame 2). This 
plane rotates with respect to YZ plane of Frame 1. Hence, kinematics of end-effector point in Frame 2 can be 
simplified as a planar problem. Also, the rotation of last joint (Joint 5) does not have any effect on the position 
of the end-effector in Frame 2. The expression for the end-effector point in Frame 2 (𝐩𝐩′) is given by 

                           𝒑𝒑′ =  𝑇𝑇1
−1 ∗ 𝒑𝒑 =>  

[
 
 
 𝑃𝑃𝑥𝑥

′ 
𝑃𝑃𝑦𝑦

′ 
𝑃𝑃𝑧𝑧

′ 
1 ]

 
 
 
 =  [

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 
0 0   0 −𝑎𝑎1

1   −𝑏𝑏1
 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1

 0  0
0     0
0    1

] [
𝑃𝑃𝑥𝑥 
𝑃𝑃𝑦𝑦 
𝑃𝑃𝑧𝑧 
1

]                                        (6) 

 Once 𝐩𝐩′ is determined from 𝐩𝐩 (which is the actual input for inverse kinematics), the joint angles calculations 
for θ2, θ3 and θ4 can be performed similar to a planar 3R (R: Revolute) serial robot, as derived in [4]. θ5  would 
correspond to the rotation of the last joint and can be one of the Euler angles for the end-effector configuration. 
To simplify the formulation, θ5 can be assumed some constant value.  Due to space restrictions, the complete 
inverse kinematics formulations are not included in this paper. The inverse kinematics equations were initially 
developed as a MATLAB/Octave program. The results obtained were compared with those obtained from 
RoboAnalyzer software, for the same DH parameters and input values of end-effector configuration (position 
and orientation), thus validating the formulations derived from scratch. 

5. Simulation Software for Nex Dexter 

The CAD model of Nex Dexter robot arm developed as described in Sections 2 and 3 was imported in Virtual 
Robot Module (VRM) of RoboAnalyzer. The VRM has a feature that it can integrated with other software or 
applications such as MATLAB or MS Excel and act as a visualizer for robot motion [6]. Similarly, Nex Dexter robot 
in VRM can be simulated by sending joint angles from another client application developed in C#. The client 
application has the inverse kinematics formulations derived in the previous section and has capability of performing 
joint and Cartesian jogging of the robot in the VRM. The client application also been integrated with actual Nex 
Dexter robot arm using a USB (serial communication) cable. The motion given to the VRM is also sent to the physical 
robot. The client application and VRM running on a laptop its integration with physical robot is illustrated in Fig. 6. 
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It was observed that joint jogging of physical robot worked as expected but the Cartesian jogging of physical robot 
was not satisfactory. This was because the motors of the robot have a resolution of 1° and any decimal value sent to 
them are rounded off. However, development of the client application was an experience that can be used to develop 
similar software for other robots with better angle resolution. 
 

Fig. 6. Online simulation of Nex Dexter robot arm/manipulator 

6. Conclusions 

A methodology to develop kinematic model and simulation software for a physical robot is proposed in this paper. 
First, the CAD model is developed in Autodesk Inventor followed by automatic extraction of its DH parameters. An 
example of Nex Dexter robotic arm is used to demonstrate the proposed methodology. Using the CAD files of each 
part, extracted DH parameters and kinematics formulation, a simulation software has been developed and reported. 
The software has capability to perform joint and Cartesian jogging in the simulation environment as well as on the 
real robot. The same procedure can be followed to develop online and offline simulation software for any physical 
robot.  
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