
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 133 (2018) 660–667

1877-0509 © 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the International Conference on Robotics and Smart Materials.
10.1016/j.procs.2018.07.101

10.1016/j.procs.2018.07.101 1877-0509

© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the International Conference on Robotics and Smart Materials.

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

1877-0509© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

International Conference on Robotics and Smart Manufacturing (RoSMa2018)

Kinematic Analysis and Development of Simulation Software
for Nex Dexter Robotic Manipulator

Amogh Patwardhan, Aditya Prakash, Rajeevlochana G. Chittawadigi*
Department of Mechanical Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India

Abstract

Industrial robots are used extensively in manufacturing units for various tasks. Most of the robot manufacturers provide software
for offline and online programming of robots, but they are usually sold separately. Few robot manufacturers do not have a dedicated
simulation software for their robots. In this paper, a methodology to create CAD model of an existing physical robot is described
by taking the example of Nex Dexter 5-axis robotic manipulator. Later, the Denavit-Hartenberg (DH) parameters were extracted
using a methodology reported elsewhere. By using the DH parameters, few CAD files were exported. A Teach Pendant Application
has been developed using Visual C# that can connect to Virtual Robot Module of RoboAnalyzer for visualization of robot motion.
The kinematic analysis of the robot was formulated for joint and Cartesian motion of the robot. The application was then integrated
with the physical Nex Dexter robotic manipulator. Hence, robot motion intended for the robot is first tested in simulation
environment and once it is found suitable, motion of the actual robot takes place. The methodology proposed is generic and can be
used to simulate any robotic manipulator.

© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:robot simulation; industrial robots; Cartesian motion; robot kinematics

1. Introduction

Robots are primarily classified as mobile and fixed base robots. Mobile robots have a base that moves either on
land, water or air whereas fixed base robots have one of its parts fixed to ground. Fixed base robots are further classified
as serial systems, parallel systems and also as tree type systems, which is a combination of the former two. Parallel
robots generally have a moving platform that can have a tool or object. Though parallel robots have better rigidity and
accuracy, they have smaller workspaces and are subject to interlocking of the robot links. On the other hand, serial

* Corresponding author. Tel.: +91-80-25183700; fax: +91-80-28440092.

E-mail address: rg_chittawadigi@blr.amrita.edu

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

1877-0509© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

International Conference on Robotics and Smart Manufacturing (RoSMa2018)

Kinematic Analysis and Development of Simulation Software
for Nex Dexter Robotic Manipulator

Amogh Patwardhan, Aditya Prakash, Rajeevlochana G. Chittawadigi*
Department of Mechanical Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India

Abstract

Industrial robots are used extensively in manufacturing units for various tasks. Most of the robot manufacturers provide software
for offline and online programming of robots, but they are usually sold separately. Few robot manufacturers do not have a dedicated
simulation software for their robots. In this paper, a methodology to create CAD model of an existing physical robot is described
by taking the example of Nex Dexter 5-axis robotic manipulator. Later, the Denavit-Hartenberg (DH) parameters were extracted
using a methodology reported elsewhere. By using the DH parameters, few CAD files were exported. A Teach Pendant Application
has been developed using Visual C# that can connect to Virtual Robot Module of RoboAnalyzer for visualization of robot motion.
The kinematic analysis of the robot was formulated for joint and Cartesian motion of the robot. The application was then integrated
with the physical Nex Dexter robotic manipulator. Hence, robot motion intended for the robot is first tested in simulation
environment and once it is found suitable, motion of the actual robot takes place. The methodology proposed is generic and can be
used to simulate any robotic manipulator.

© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:robot simulation; industrial robots; Cartesian motion; robot kinematics

1. Introduction

Robots are primarily classified as mobile and fixed base robots. Mobile robots have a base that moves either on
land, water or air whereas fixed base robots have one of its parts fixed to ground. Fixed base robots are further classified
as serial systems, parallel systems and also as tree type systems, which is a combination of the former two. Parallel
robots generally have a moving platform that can have a tool or object. Though parallel robots have better rigidity and
accuracy, they have smaller workspaces and are subject to interlocking of the robot links. On the other hand, serial

* Corresponding author. Tel.: +91-80-25183700; fax: +91-80-28440092.

E-mail address: rg_chittawadigi@blr.amrita.edu

2 Patwardhan et al/ Procedia Computer Science 00 (2018) 000–000

robots have larger workspaces though they are less accurate. In industries, serial robots are used more extensively and
are referred to as industrial manipulators.

Industrial robots or manipulators are generally used to perform tasks such as assembly, grinding, pick and place,
painting, welding, etc. The robots are expected to perform the tasks in Cartesian space where as they are controlled in
their joint space. Hence, a mathematical model correlating the joint motion and the motion of the end-effector, the last
link of the robot, has to be known to achieve desired robot motion. The mathematic model, known as kinematic model,
is generally derived using the defacto standard Denavit-Hartenberg (DH) parameters. Hence, for a given robot, one
should know its DH parameters before proceeding ahead with its kinematic analysis and motion.

Robots are used in environments with static and dynamic obstacles. Also, if the motion of the robot is checked in a
simulation software before being programmed on an actual robot, the efforts and time will be reduced significantly.
Also, simulation can avoid any possible damage of the physical robot. Hence, a simulation software for a robot is of
great importance. Robot simulation software are broadly classified into offline and online simulation. In the former,
the CAD model of robot and its workcell is shown to the user. Any robot motion in the form of joint and Cartesian
jogging can be provided as input and the 3D CAD model of the robot arm moves. Once the desired motion is achieved,
the robot motion or the program can be sent to actual robot controller. During the simulation, the actual robot is not
disturbed and hence robot’s productivity is not affected during the simulation. However, any dynamic obstacles in the
workcell can not be identified and accordingly alter robot motion, which is done in online simulation. Hence, for
environments with dynamic objects such as a human co-worker or for multiple robots sharing common workspace,
online simulation should be performed.

Several robot simulation software exist which allow offline and online simulation of robots. Some of the
commercial ones include ABB RobotStudio, KUKA Sim Pro, RoboDK library, Visual Components, etc. A few free
or opensource alternatives exist such as ROBOMOSP[1], V-REP, etc. Another such software is RoboAnalyzer[2], a
3D model based robotics learning software which is available for free, co-developed by the third author. It has several
modules related to forward kinematics, inverse kinematics, inverse and forward dynamics, and Cartesian motion
planning of serial robots. Its Virtual Robot Module (VRM) has CAD models of more than 20 industrial robots and can
perform joint and Cartesian motion on them. The architecture of VRM is kept such that newer models of robots can
be added with ease and simulated readily. RoboAnalyzer software has several advantages and a few disadvantages
over other similar software, as reported in [2]. Due to space restrictions, they have not been listed down here.

In this paper, a methodology for the development of offline and online simulation software for a custom robot is
proposed. These methodology would help a robot manufacturer to use RoboAnalyzer platform to develop a custom
robot simulation software. Section 2 explains the steps to be followed in the modeling of 3D CAD assembly of a
physical robot, Nex Dexter 5-axis robotic manipulator in this case. In Section 3, the methodology to determine or
extract the DH parameters from the CAD model of a robot and preparation of 3D models for simulation software are
presented. Thereafter, the formulations for the kinematic analysis of the robot is described in Section 4. A client
application, acting as an online simulation software, is presented in Section 5 followed by the conclusions.

2. Modeling of 3D CAD Assembly of Robot

The CAD assembly files of industrial robots from standard robot manufacturers such as ABB, Fanuc, KUKA, etc., are
generally available in the respective manufacturer’s website and can be used to import in Virtual Robot Module after
making certain modifications. However if the CAD model of a robot is not available, the model has to be developed
manually by the end-user. One such robot that has been taken as an example in this paper is Nex Dexter 5-axis robotic
manipulator, shown in Fig. 1(a). The methodology proposed in this paper is generic and any physical robot can be
modeled and simulated in VRM. The steps followed in modeling of CAD assembly of the robots are below:
 Measure the important dimensions of each robot link
 Model each robot link as a CAD part in Autodesk Inventor software. Any other CAD software can also be used

for modeling. However, certain steps followed in this this methodology have to be executed manually in the other
software.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.07.101&domain=pdf

 Amogh Patwardhan et al. / Procedia Computer Science 133 (2018) 660–667 661

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

1877-0509© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

International Conference on Robotics and Smart Manufacturing (RoSMa2018)

Kinematic Analysis and Development of Simulation Software
for Nex Dexter Robotic Manipulator

Amogh Patwardhan, Aditya Prakash, Rajeevlochana G. Chittawadigi*
Department of Mechanical Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India

Abstract

Industrial robots are used extensively in manufacturing units for various tasks. Most of the robot manufacturers provide software
for offline and online programming of robots, but they are usually sold separately. Few robot manufacturers do not have a dedicated
simulation software for their robots. In this paper, a methodology to create CAD model of an existing physical robot is described
by taking the example of Nex Dexter 5-axis robotic manipulator. Later, the Denavit-Hartenberg (DH) parameters were extracted
using a methodology reported elsewhere. By using the DH parameters, few CAD files were exported. A Teach Pendant Application
has been developed using Visual C# that can connect to Virtual Robot Module of RoboAnalyzer for visualization of robot motion.
The kinematic analysis of the robot was formulated for joint and Cartesian motion of the robot. The application was then integrated
with the physical Nex Dexter robotic manipulator. Hence, robot motion intended for the robot is first tested in simulation
environment and once it is found suitable, motion of the actual robot takes place. The methodology proposed is generic and can be
used to simulate any robotic manipulator.

© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:robot simulation; industrial robots; Cartesian motion; robot kinematics

1. Introduction

Robots are primarily classified as mobile and fixed base robots. Mobile robots have a base that moves either on
land, water or air whereas fixed base robots have one of its parts fixed to ground. Fixed base robots are further classified
as serial systems, parallel systems and also as tree type systems, which is a combination of the former two. Parallel
robots generally have a moving platform that can have a tool or object. Though parallel robots have better rigidity and
accuracy, they have smaller workspaces and are subject to interlocking of the robot links. On the other hand, serial

* Corresponding author. Tel.: +91-80-25183700; fax: +91-80-28440092.

E-mail address: rg_chittawadigi@blr.amrita.edu

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

1877-0509© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

International Conference on Robotics and Smart Manufacturing (RoSMa2018)

Kinematic Analysis and Development of Simulation Software
for Nex Dexter Robotic Manipulator

Amogh Patwardhan, Aditya Prakash, Rajeevlochana G. Chittawadigi*
Department of Mechanical Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India

Abstract

Industrial robots are used extensively in manufacturing units for various tasks. Most of the robot manufacturers provide software
for offline and online programming of robots, but they are usually sold separately. Few robot manufacturers do not have a dedicated
simulation software for their robots. In this paper, a methodology to create CAD model of an existing physical robot is described
by taking the example of Nex Dexter 5-axis robotic manipulator. Later, the Denavit-Hartenberg (DH) parameters were extracted
using a methodology reported elsewhere. By using the DH parameters, few CAD files were exported. A Teach Pendant Application
has been developed using Visual C# that can connect to Virtual Robot Module of RoboAnalyzer for visualization of robot motion.
The kinematic analysis of the robot was formulated for joint and Cartesian motion of the robot. The application was then integrated
with the physical Nex Dexter robotic manipulator. Hence, robot motion intended for the robot is first tested in simulation
environment and once it is found suitable, motion of the actual robot takes place. The methodology proposed is generic and can be
used to simulate any robotic manipulator.

© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:robot simulation; industrial robots; Cartesian motion; robot kinematics

1. Introduction

Robots are primarily classified as mobile and fixed base robots. Mobile robots have a base that moves either on
land, water or air whereas fixed base robots have one of its parts fixed to ground. Fixed base robots are further classified
as serial systems, parallel systems and also as tree type systems, which is a combination of the former two. Parallel
robots generally have a moving platform that can have a tool or object. Though parallel robots have better rigidity and
accuracy, they have smaller workspaces and are subject to interlocking of the robot links. On the other hand, serial

* Corresponding author. Tel.: +91-80-25183700; fax: +91-80-28440092.

E-mail address: rg_chittawadigi@blr.amrita.edu

2 Patwardhan et al/ Procedia Computer Science 00 (2018) 000–000

robots have larger workspaces though they are less accurate. In industries, serial robots are used more extensively and
are referred to as industrial manipulators.

Industrial robots or manipulators are generally used to perform tasks such as assembly, grinding, pick and place,
painting, welding, etc. The robots are expected to perform the tasks in Cartesian space where as they are controlled in
their joint space. Hence, a mathematical model correlating the joint motion and the motion of the end-effector, the last
link of the robot, has to be known to achieve desired robot motion. The mathematic model, known as kinematic model,
is generally derived using the defacto standard Denavit-Hartenberg (DH) parameters. Hence, for a given robot, one
should know its DH parameters before proceeding ahead with its kinematic analysis and motion.

Robots are used in environments with static and dynamic obstacles. Also, if the motion of the robot is checked in a
simulation software before being programmed on an actual robot, the efforts and time will be reduced significantly.
Also, simulation can avoid any possible damage of the physical robot. Hence, a simulation software for a robot is of
great importance. Robot simulation software are broadly classified into offline and online simulation. In the former,
the CAD model of robot and its workcell is shown to the user. Any robot motion in the form of joint and Cartesian
jogging can be provided as input and the 3D CAD model of the robot arm moves. Once the desired motion is achieved,
the robot motion or the program can be sent to actual robot controller. During the simulation, the actual robot is not
disturbed and hence robot’s productivity is not affected during the simulation. However, any dynamic obstacles in the
workcell can not be identified and accordingly alter robot motion, which is done in online simulation. Hence, for
environments with dynamic objects such as a human co-worker or for multiple robots sharing common workspace,
online simulation should be performed.

Several robot simulation software exist which allow offline and online simulation of robots. Some of the
commercial ones include ABB RobotStudio, KUKA Sim Pro, RoboDK library, Visual Components, etc. A few free
or opensource alternatives exist such as ROBOMOSP[1], V-REP, etc. Another such software is RoboAnalyzer[2], a
3D model based robotics learning software which is available for free, co-developed by the third author. It has several
modules related to forward kinematics, inverse kinematics, inverse and forward dynamics, and Cartesian motion
planning of serial robots. Its Virtual Robot Module (VRM) has CAD models of more than 20 industrial robots and can
perform joint and Cartesian motion on them. The architecture of VRM is kept such that newer models of robots can
be added with ease and simulated readily. RoboAnalyzer software has several advantages and a few disadvantages
over other similar software, as reported in [2]. Due to space restrictions, they have not been listed down here.

In this paper, a methodology for the development of offline and online simulation software for a custom robot is
proposed. These methodology would help a robot manufacturer to use RoboAnalyzer platform to develop a custom
robot simulation software. Section 2 explains the steps to be followed in the modeling of 3D CAD assembly of a
physical robot, Nex Dexter 5-axis robotic manipulator in this case. In Section 3, the methodology to determine or
extract the DH parameters from the CAD model of a robot and preparation of 3D models for simulation software are
presented. Thereafter, the formulations for the kinematic analysis of the robot is described in Section 4. A client
application, acting as an online simulation software, is presented in Section 5 followed by the conclusions.

2. Modeling of 3D CAD Assembly of Robot

The CAD assembly files of industrial robots from standard robot manufacturers such as ABB, Fanuc, KUKA, etc., are
generally available in the respective manufacturer’s website and can be used to import in Virtual Robot Module after
making certain modifications. However if the CAD model of a robot is not available, the model has to be developed
manually by the end-user. One such robot that has been taken as an example in this paper is Nex Dexter 5-axis robotic
manipulator, shown in Fig. 1(a). The methodology proposed in this paper is generic and any physical robot can be
modeled and simulated in VRM. The steps followed in modeling of CAD assembly of the robots are below:
 Measure the important dimensions of each robot link
 Model each robot link as a CAD part in Autodesk Inventor software. Any other CAD software can also be used

for modeling. However, certain steps followed in this this methodology have to be executed manually in the other
software.

662 Amogh Patwardhan et al. / Procedia Computer Science 133 (2018) 660–667
 Patwardhan et al/ Procedia Computer Science 00 (2018) 000–000 3

 Measure the distance between consecutive joint axes. These dimensions find their way in the DH parameters of
the robot, which are determined at a later stage. The measured dimensions should be validated with the DH
parameters found.

 Insert the CAD part of each link in Autodesk Inventor CAD assembly. The base part (Link 0) should be placed
such that the bottom plane of the component is on the Assembly XY plane and the first joint axis is along the
Assembly Z axis.

 Define revolute joints (Insert Constraint) between the consecutive robot links. While defining the constraints
between the robot parts, the first part to be selected should always be the link that is towards the base part and
the second selection should be the part towards the last link (end-effector). For example, if Insert Constraint 1 is
to be created, the first selection should be base part (Link 0) and the second selection should be Link 1.

 Place a UCS (User Coordinate System), a marker to represent X, Y and Z axes of a coordinate system, inside the
end-effector link. The UCS added should be such that its Z axis is parallel to the direction of the last joint axis.
Also the origin of the UCS should be located at the center of the gripper or any tool at the end-effector, typically
known as TCP (Tool Center Point).

The CAD assembly of the given robot in Autodesk Inventor software is shown in Fig. 1(b). The assembly should

have only n+1 parts (n=degree-of-freedom or the number of joint axes) and have only n Insert Constraints. These
Insert Constraints should also be defined from the base link to the end-effector. Any change in the order will fail the
DH parameters extraction methodology explained in the next section.

Fig. 1. Nex Dexter 5-axis robot arm

3. DH Parameters of Robot

The Denavit-Hartenberg (DH) parameters are generally used to represent a robot architecture. For the sake of
completeness of the paper, a very brief explanation of the DH parameters is given below.

A line can be represented in a 3D coordinate system in various ways. One way is to represent it as position vectors
(𝒑𝒑𝟏𝟏and 𝒑𝒑𝟐𝟐) of two points (𝑃𝑃1 and 𝑃𝑃2) on the line, requiring a total of 6 coordinates, as illustrated in Fig. 2(a). Another
way is to represent using position vector (𝒑𝒑) of any point (𝑃𝑃) on the line and another unit vector (𝒆𝒆) to represent the
direction of the line which also requires a total of 6 parameters, as shown in Fig. 2(b). Denavit and Hartenberg [3]
proposed that a line can be represented using just four parameters.

If a common normal is drawn between the Z axis of the coordinate system (𝑋𝑋1𝑌𝑌1𝑍𝑍1) and the line, it would intersect
at two points 𝑂𝑂1

′ and 𝑂𝑂1
′′ , as shown in Fig. 2(c). They proposed four parameters required to reach the line from

coordinate system. Actually, the proposal was for open-loop and closed-loop mechanisms. If a coordinate system is
known on a link and the axis of the next joint is represented as a line, four parameters are required to go from the
coordinate system to the line. Once the line is reached, a new coordinate system is formed on the next link and the
subsequent joint axis is reached using four more parameters. The new coordinate frame will have its Z axis along the

(a) Physical model (b) CAD Assembly in Autodesk Inventor

4 Patwardhan et al/ Procedia Computer Science 00 (2018) 000–000

joint axis, its X axis along the common normal and Y axis obtained using cross-product rule. The origin of the new
coordinate system is at 𝑂𝑂1

′′. The four DH parameters are described briefly in Table 1. More details on the assignment
of DH frames, with regard to serial robots, can be found in [4].

Fig. 2. Line representation with respect to a Coordinate frame

Table 1. Denavit-Hartenberg (DH) parameters

Parameter Description

Joint Offset (𝑏𝑏) Linear distance from 𝑂𝑂1 to 𝑂𝑂1
′ along 𝑍𝑍1

Joint Angle (𝜃𝜃) Angle from 𝑋𝑋1to common normal about 𝑍𝑍1

Link length (𝑎𝑎) Linear distance from 𝑂𝑂1
′ to 𝑂𝑂1

′′ along common normal

Twist Angle (𝜃𝜃) Angle from 𝑍𝑍1 (a line parallel to it) and the line about common normal

3.1. DH parameters from technical drawings

Robot manufacturers generally provide technical drawings of the robot arm in which key dimensions such as
distance between joint axes and other information are provided. By following the steps mentioned in [4], one can
determine the DH parameters of the robot at hand. An analytical methodology to automatically extract the DH
parameters from a CAD model of the robot was proposed in [5], which will be followed in this paper.

3.2. DH parameters extraction from CAD model

To extract the DH parameters of a CAD model of robot arm, the steps followed are below:
 Model the CAD assembly as described in Section 2
 Start the Inventor addin
 The addin reads the joint axes data (point on line and unit vector along the line) and determines the DH parameters

using the methodology proposed in [5], using line geometry.
 One UCS (User Coordinate System) is programmatically added to the CAD assembly where the DH frames are

to be located.
 These UCS from assembly have to be moved inside each Inventor part file, which is a required step to export the

CAD file.

The addin and the Nex Dexter CAD assembly are shown in Fig. 3(a). The DH parameters and the UCS added to

the assembly can be seen in the figure as well. Note that the origins of Frame 4 and 5 actually coincide. For the sake
of clarity, Frame 5 is displaced. The DH parameters extracted automatically had Z axes of Frame 2 (on Link 1) and
Frame 3 (on Link 2) are in opposite direction. Similarly for Frame 3 and Frame 4. Manually, the UCS corresponding
to Frame 2 and Frame 4 are flipped to have opposite Z axis as compared to their earlier direction. The modified UCS
frames are shown in Fig. 3(b). This is done to get DH parameters which are simpler and the kinematic formulations
become easy. The DH parameters determined by the addin after some minor modifications are given in Table 2. These

𝑂𝑂1

𝑍𝑍1

𝑌𝑌1
𝑋𝑋1

𝑃𝑃𝟏𝟏

𝑃𝑃𝟐𝟐

𝒑𝒑𝟏𝟏

𝒑𝒑𝟐𝟐

𝑂𝑂1

𝑍𝑍1

𝑌𝑌1
𝑋𝑋1

𝑃𝑃
𝒑𝒑

𝒆𝒆

𝑂𝑂1

𝑍𝑍1

𝑌𝑌1
𝑋𝑋1

𝑂𝑂1
′

𝑂𝑂1
′′

𝛼𝛼

𝑎𝑎

𝑏𝑏
𝜃𝜃

(a) Two position vectors (b) A position vector and direction (c) Four DH parameters

 Amogh Patwardhan et al. / Procedia Computer Science 133 (2018) 660–667 663
 Patwardhan et al/ Procedia Computer Science 00 (2018) 000–000 3

 Measure the distance between consecutive joint axes. These dimensions find their way in the DH parameters of
the robot, which are determined at a later stage. The measured dimensions should be validated with the DH
parameters found.

 Insert the CAD part of each link in Autodesk Inventor CAD assembly. The base part (Link 0) should be placed
such that the bottom plane of the component is on the Assembly XY plane and the first joint axis is along the
Assembly Z axis.

 Define revolute joints (Insert Constraint) between the consecutive robot links. While defining the constraints
between the robot parts, the first part to be selected should always be the link that is towards the base part and
the second selection should be the part towards the last link (end-effector). For example, if Insert Constraint 1 is
to be created, the first selection should be base part (Link 0) and the second selection should be Link 1.

 Place a UCS (User Coordinate System), a marker to represent X, Y and Z axes of a coordinate system, inside the
end-effector link. The UCS added should be such that its Z axis is parallel to the direction of the last joint axis.
Also the origin of the UCS should be located at the center of the gripper or any tool at the end-effector, typically
known as TCP (Tool Center Point).

The CAD assembly of the given robot in Autodesk Inventor software is shown in Fig. 1(b). The assembly should

have only n+1 parts (n=degree-of-freedom or the number of joint axes) and have only n Insert Constraints. These
Insert Constraints should also be defined from the base link to the end-effector. Any change in the order will fail the
DH parameters extraction methodology explained in the next section.

Fig. 1. Nex Dexter 5-axis robot arm

3. DH Parameters of Robot

The Denavit-Hartenberg (DH) parameters are generally used to represent a robot architecture. For the sake of
completeness of the paper, a very brief explanation of the DH parameters is given below.

A line can be represented in a 3D coordinate system in various ways. One way is to represent it as position vectors
(𝒑𝒑𝟏𝟏and 𝒑𝒑𝟐𝟐) of two points (𝑃𝑃1 and 𝑃𝑃2) on the line, requiring a total of 6 coordinates, as illustrated in Fig. 2(a). Another
way is to represent using position vector (𝒑𝒑) of any point (𝑃𝑃) on the line and another unit vector (𝒆𝒆) to represent the
direction of the line which also requires a total of 6 parameters, as shown in Fig. 2(b). Denavit and Hartenberg [3]
proposed that a line can be represented using just four parameters.

If a common normal is drawn between the Z axis of the coordinate system (𝑋𝑋1𝑌𝑌1𝑍𝑍1) and the line, it would intersect
at two points 𝑂𝑂1

′ and 𝑂𝑂1
′′ , as shown in Fig. 2(c). They proposed four parameters required to reach the line from

coordinate system. Actually, the proposal was for open-loop and closed-loop mechanisms. If a coordinate system is
known on a link and the axis of the next joint is represented as a line, four parameters are required to go from the
coordinate system to the line. Once the line is reached, a new coordinate system is formed on the next link and the
subsequent joint axis is reached using four more parameters. The new coordinate frame will have its Z axis along the

(a) Physical model (b) CAD Assembly in Autodesk Inventor

4 Patwardhan et al/ Procedia Computer Science 00 (2018) 000–000

joint axis, its X axis along the common normal and Y axis obtained using cross-product rule. The origin of the new
coordinate system is at 𝑂𝑂1

′′. The four DH parameters are described briefly in Table 1. More details on the assignment
of DH frames, with regard to serial robots, can be found in [4].

Fig. 2. Line representation with respect to a Coordinate frame

Table 1. Denavit-Hartenberg (DH) parameters

Parameter Description

Joint Offset (𝑏𝑏) Linear distance from 𝑂𝑂1 to 𝑂𝑂1
′ along 𝑍𝑍1

Joint Angle (𝜃𝜃) Angle from 𝑋𝑋1to common normal about 𝑍𝑍1

Link length (𝑎𝑎) Linear distance from 𝑂𝑂1
′ to 𝑂𝑂1

′′ along common normal

Twist Angle (𝜃𝜃) Angle from 𝑍𝑍1 (a line parallel to it) and the line about common normal

3.1. DH parameters from technical drawings

Robot manufacturers generally provide technical drawings of the robot arm in which key dimensions such as
distance between joint axes and other information are provided. By following the steps mentioned in [4], one can
determine the DH parameters of the robot at hand. An analytical methodology to automatically extract the DH
parameters from a CAD model of the robot was proposed in [5], which will be followed in this paper.

3.2. DH parameters extraction from CAD model

To extract the DH parameters of a CAD model of robot arm, the steps followed are below:
 Model the CAD assembly as described in Section 2
 Start the Inventor addin
 The addin reads the joint axes data (point on line and unit vector along the line) and determines the DH parameters

using the methodology proposed in [5], using line geometry.
 One UCS (User Coordinate System) is programmatically added to the CAD assembly where the DH frames are

to be located.
 These UCS from assembly have to be moved inside each Inventor part file, which is a required step to export the

CAD file.

The addin and the Nex Dexter CAD assembly are shown in Fig. 3(a). The DH parameters and the UCS added to

the assembly can be seen in the figure as well. Note that the origins of Frame 4 and 5 actually coincide. For the sake
of clarity, Frame 5 is displaced. The DH parameters extracted automatically had Z axes of Frame 2 (on Link 1) and
Frame 3 (on Link 2) are in opposite direction. Similarly for Frame 3 and Frame 4. Manually, the UCS corresponding
to Frame 2 and Frame 4 are flipped to have opposite Z axis as compared to their earlier direction. The modified UCS
frames are shown in Fig. 3(b). This is done to get DH parameters which are simpler and the kinematic formulations
become easy. The DH parameters determined by the addin after some minor modifications are given in Table 2. These

𝑂𝑂1

𝑍𝑍1

𝑌𝑌1
𝑋𝑋1

𝑃𝑃𝟏𝟏

𝑃𝑃𝟐𝟐

𝒑𝒑𝟏𝟏

𝒑𝒑𝟐𝟐

𝑂𝑂1

𝑍𝑍1

𝑌𝑌1
𝑋𝑋1

𝑃𝑃
𝒑𝒑

𝒆𝒆

𝑂𝑂1

𝑍𝑍1

𝑌𝑌1
𝑋𝑋1

𝑂𝑂1
′

𝑂𝑂1
′′

𝛼𝛼

𝑎𝑎

𝑏𝑏
𝜃𝜃

(a) Two position vectors (b) A position vector and direction (c) Four DH parameters

664 Amogh Patwardhan et al. / Procedia Computer Science 133 (2018) 660–667 Patwardhan et al/ Procedia Computer Science 00 (2018) 000–000 5

parameters are required for the kinematic analysis and simulation of robot. Same methodology of DH parameter
extraction can be followed for 3D CAD model of any serial robot.

Fig. 3. Automatic extraction of DH parameters using [5]

Table 2. DH parameters of Nex Dexter Robotic Arm [JV: Joint Variable]

Joint Joint Offset (𝑏𝑏𝑖𝑖)
(mm)

Joint Angle (𝜃𝜃𝑖𝑖)
(°)

Link length (𝑎𝑎1)

(mm)

Twist Angle (𝛼𝛼1)

(°)

Joint 1 119 90 (JV) 10 90

Joint 2 0 90 (JV) 102.5 0

Joint 3 0 0 (JV) 82 0

Joint 4 0 180 (JV) 0 -90

Joint 5 179.5 0 (JV) 0 0

3.3. Preparation of 3D Model for Simulation

The CAD assembly with the UCS is made n+1 copies, corresponding to the n+1 robot links. Each CAD assembly
is separately opened in Autodesk Inventor and all except one part are deleted in the assembly. For example, for Link
2’s case, all links except Link 2 are deleted as shown in Fig. 4(a). Note that the UCS attached inside the part of Link
2 is intact and distinct from the Assembly Origin coordinate frame. Using Inventor’s assembly constraints, the UCS
of Link 2 is constrained with Assembly Origin coordinate frame so that they coincide. This is shown in Fig. 4(b).

Fig. 4. Modifications in CAD assembly file for export STL files for each part file

Thereafter, the assembly file is exported as STL file (ASCII format), which can then be read by RoboAnalyzer

(b) Modified assembly file for Link 2
Assembly Origin Frame

DH Frame on Link 2
Assembly Origin Frame
and DH Frame on Link 2

(a) Assembly for Link 2

DH parameters extraction addin

Frame 1

Extracted DH Parameters

UCS added in assembly

Frame 2

Frame 3

Frame 4

Frame 5
Frame 6

(a) Inventor addin and CAD assembly (b) Modified UCS for simpler DH parameters

6 Patwardhan et al/ Procedia Computer Science 00 (2018) 000–000

software. The same steps are repeated for all the robot links. Further, RoboAnlayzer software expects custom robot
CAD data and DH parameters data in the form of a XML file (sample can be taken from any existing robot model).
The XML file once created using the DH parameters obtained in the previous steps can be used to load Nex Dexter.

4. Kinematic Analysis

Kinematic analysis of a serial robot can be classified into forward and inverse kinematics. For a given set of joint
angles, determination of the configuration (position and orientation) of the end-effector is known as forward
kinematics. On the other hand, for a given end-effector configuration, finding the required joint angles is known as
inverse kinematics. For serial robots, forward kinematics is straight forward and has unique solutions but the inverse
kinematics formulations are only possible for standard robot architecture. Also, inverse kinematics may provide
multiple solutions and hence care is required to choose the correct solution.

4.1. Forward kinematics

Referring to Fig. 5(a), the forward kinematic analysis is the solution of the following equation, where 𝑇𝑇𝑖𝑖 and
𝑇𝑇𝑒𝑒𝑒𝑒 correspond to Homogeneous Transformation Matrix (HTM) corresponding to ith Joint’s DH parameters, and that
of the End-effector with respect to the base frame (Frame 1 on Link 0), respectively,

𝑇𝑇𝑒𝑒𝑒𝑒 = 𝑇𝑇1 ∗ 𝑇𝑇2 ∗ 𝑇𝑇3 ∗ 𝑇𝑇4 ∗ 𝑇𝑇5 (1)

Fig. 5. Homogeneous Transformation Matrices (HTM) for forward and inverse kinematics

4.2. Inverse kinematics

To obtain close form solution for inverse kinematics of the Nex Dexter robot arm, the following steps are followed.
Equation 1 is rewritten as

𝑇𝑇𝑒𝑒𝑒𝑒 = 𝑇𝑇1 ∗ [𝑇𝑇𝑒𝑒𝑒𝑒]2; where [𝑇𝑇𝑒𝑒𝑒𝑒]2 = 𝑇𝑇2 ∗ 𝑇𝑇3 ∗ 𝑇𝑇4 ∗ 𝑇𝑇5 (2)

[𝑇𝑇𝑒𝑒𝑒𝑒]2 in Equation 2 corresponds to the HTM of the EE with respect to the Frame 2, as shown in Fig. 5(b). Note that
this expression will not have any θ1 terms in it. Also, whenever Joint 1 rotates, a plane containing the End-effector
point always lies in the XY plane of Frame 2. This is due to the architecture of the robot. Hence, determination of
angles of Joint 2, Joint 3 and Joint 4 becomes a planar problem, thus simplifying the calculations. [𝑇𝑇𝑒𝑒𝑒𝑒]2 can be
determined as

(a) Forward kinematics

𝑇𝑇𝑒𝑒𝑒𝑒

𝑇𝑇1

𝑇𝑇2

𝑇𝑇3 𝑇𝑇4

𝑇𝑇5

𝑇𝑇1

[𝑇𝑇𝑒𝑒𝑒𝑒]2

𝑇𝑇𝑒𝑒𝑒𝑒

𝑇𝑇1
−1

(b) 𝑇𝑇𝑒𝑒𝑒𝑒 in Frame 1 and Frame 2

 Amogh Patwardhan et al. / Procedia Computer Science 133 (2018) 660–667 665 Patwardhan et al/ Procedia Computer Science 00 (2018) 000–000 5

parameters are required for the kinematic analysis and simulation of robot. Same methodology of DH parameter
extraction can be followed for 3D CAD model of any serial robot.

Fig. 3. Automatic extraction of DH parameters using [5]

Table 2. DH parameters of Nex Dexter Robotic Arm [JV: Joint Variable]

Joint Joint Offset (𝑏𝑏𝑖𝑖)
(mm)

Joint Angle (𝜃𝜃𝑖𝑖)
(°)

Link length (𝑎𝑎1)

(mm)

Twist Angle (𝛼𝛼1)

(°)

Joint 1 119 90 (JV) 10 90

Joint 2 0 90 (JV) 102.5 0

Joint 3 0 0 (JV) 82 0

Joint 4 0 180 (JV) 0 -90

Joint 5 179.5 0 (JV) 0 0

3.3. Preparation of 3D Model for Simulation

The CAD assembly with the UCS is made n+1 copies, corresponding to the n+1 robot links. Each CAD assembly
is separately opened in Autodesk Inventor and all except one part are deleted in the assembly. For example, for Link
2’s case, all links except Link 2 are deleted as shown in Fig. 4(a). Note that the UCS attached inside the part of Link
2 is intact and distinct from the Assembly Origin coordinate frame. Using Inventor’s assembly constraints, the UCS
of Link 2 is constrained with Assembly Origin coordinate frame so that they coincide. This is shown in Fig. 4(b).

Fig. 4. Modifications in CAD assembly file for export STL files for each part file

Thereafter, the assembly file is exported as STL file (ASCII format), which can then be read by RoboAnalyzer

(b) Modified assembly file for Link 2
Assembly Origin Frame

DH Frame on Link 2
Assembly Origin Frame
and DH Frame on Link 2

(a) Assembly for Link 2

DH parameters extraction addin

Frame 1

Extracted DH Parameters

UCS added in assembly

Frame 2

Frame 3

Frame 4

Frame 5
Frame 6

(a) Inventor addin and CAD assembly (b) Modified UCS for simpler DH parameters

6 Patwardhan et al/ Procedia Computer Science 00 (2018) 000–000

software. The same steps are repeated for all the robot links. Further, RoboAnlayzer software expects custom robot
CAD data and DH parameters data in the form of a XML file (sample can be taken from any existing robot model).
The XML file once created using the DH parameters obtained in the previous steps can be used to load Nex Dexter.

4. Kinematic Analysis

Kinematic analysis of a serial robot can be classified into forward and inverse kinematics. For a given set of joint
angles, determination of the configuration (position and orientation) of the end-effector is known as forward
kinematics. On the other hand, for a given end-effector configuration, finding the required joint angles is known as
inverse kinematics. For serial robots, forward kinematics is straight forward and has unique solutions but the inverse
kinematics formulations are only possible for standard robot architecture. Also, inverse kinematics may provide
multiple solutions and hence care is required to choose the correct solution.

4.1. Forward kinematics

Referring to Fig. 5(a), the forward kinematic analysis is the solution of the following equation, where 𝑇𝑇𝑖𝑖 and
𝑇𝑇𝑒𝑒𝑒𝑒 correspond to Homogeneous Transformation Matrix (HTM) corresponding to ith Joint’s DH parameters, and that
of the End-effector with respect to the base frame (Frame 1 on Link 0), respectively,

𝑇𝑇𝑒𝑒𝑒𝑒 = 𝑇𝑇1 ∗ 𝑇𝑇2 ∗ 𝑇𝑇3 ∗ 𝑇𝑇4 ∗ 𝑇𝑇5 (1)

Fig. 5. Homogeneous Transformation Matrices (HTM) for forward and inverse kinematics

4.2. Inverse kinematics

To obtain close form solution for inverse kinematics of the Nex Dexter robot arm, the following steps are followed.
Equation 1 is rewritten as

𝑇𝑇𝑒𝑒𝑒𝑒 = 𝑇𝑇1 ∗ [𝑇𝑇𝑒𝑒𝑒𝑒]2; where [𝑇𝑇𝑒𝑒𝑒𝑒]2 = 𝑇𝑇2 ∗ 𝑇𝑇3 ∗ 𝑇𝑇4 ∗ 𝑇𝑇5 (2)

[𝑇𝑇𝑒𝑒𝑒𝑒]2 in Equation 2 corresponds to the HTM of the EE with respect to the Frame 2, as shown in Fig. 5(b). Note that
this expression will not have any θ1 terms in it. Also, whenever Joint 1 rotates, a plane containing the End-effector
point always lies in the XY plane of Frame 2. This is due to the architecture of the robot. Hence, determination of
angles of Joint 2, Joint 3 and Joint 4 becomes a planar problem, thus simplifying the calculations. [𝑇𝑇𝑒𝑒𝑒𝑒]2 can be
determined as

(a) Forward kinematics

𝑇𝑇𝑒𝑒𝑒𝑒

𝑇𝑇1

𝑇𝑇2

𝑇𝑇3 𝑇𝑇4

𝑇𝑇5

𝑇𝑇1

[𝑇𝑇𝑒𝑒𝑒𝑒]2

𝑇𝑇𝑒𝑒𝑒𝑒

𝑇𝑇1
−1

(b) 𝑇𝑇𝑒𝑒𝑒𝑒 in Frame 1 and Frame 2

666 Amogh Patwardhan et al. / Procedia Computer Science 133 (2018) 660–667
 Patwardhan et al/ Procedia Computer Science 00 (2018) 000–000 7

[𝑇𝑇𝑒𝑒𝑒𝑒]2 = 𝑇𝑇1

−1 ∗ 𝑇𝑇𝑒𝑒𝑒𝑒 (3)

where 𝑇𝑇1

−1 corresponds to the HTM of Frame 1 with respect to Frame 2. Note that 𝑇𝑇1 was earlier obtained by
multiplying four individual HTM corresponding to each of the DH parameters for Joint 1. Similarly, 𝑇𝑇1

−1 can be
obtained by the multiplication of HTMs corresponding to the opposite sign value of each of the DH parameters and
the order of multiplication being the opposite. The expression for 𝑇𝑇1

−1 is obtained for α1= 90° as

 𝑇𝑇1
−1 = [

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1
− 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1

 0 −𝑎𝑎1
𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1 −𝑏𝑏1 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1

 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 −𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1
 0 0

 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1 𝑏𝑏1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1
0 1

] = [
𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1

0 0 0 −𝑎𝑎1
1 −𝑏𝑏1

 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1
 0 0

0 0
0 1

] (4)

Note that the last column of the HTM in Equation 4 does not have a Z component, which also justifies why the end-
effector point will always remain on the XY plane of Frame 2. Let 𝐩𝐩 = [𝑃𝑃𝑥𝑥 𝑃𝑃𝑦𝑦 𝑃𝑃𝑧𝑧]

T correspond to the end-effector
point with respect to Frame 1 and 𝐩𝐩′ = [𝑃𝑃𝑥𝑥

′ 𝑃𝑃𝑦𝑦
′ 𝑃𝑃𝑧𝑧

′]T. The inverse kinematics of 5-axis Nex Dexter robot arm can
be simplified in the following manner:
 θ1 has only effect on 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑦𝑦 and does not influence 𝑃𝑃𝑧𝑧. By looking at the geometry, θ1 can be determined as

𝜃𝜃1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠2(𝑃𝑃𝑦𝑦, 𝑃𝑃𝑧𝑧) (5)

 Origins of Frame 2, Frame 3, Frame 4, Frame 5 and Frame 6 always line on a plane (XY plane of Frame 2). This
plane rotates with respect to YZ plane of Frame 1. Hence, kinematics of end-effector point in Frame 2 can be
simplified as a planar problem. Also, the rotation of last joint (Joint 5) does not have any effect on the position
of the end-effector in Frame 2. The expression for the end-effector point in Frame 2 (𝐩𝐩′) is given by

 𝒑𝒑′ = 𝑇𝑇1
−1 ∗ 𝒑𝒑 =>

[

 𝑃𝑃𝑥𝑥

′
𝑃𝑃𝑦𝑦

′
𝑃𝑃𝑧𝑧

′
1]

 = [

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1
0 0 0 −𝑎𝑎1

1 −𝑏𝑏1
 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1

 0 0
0 0
0 1

] [
𝑃𝑃𝑥𝑥
𝑃𝑃𝑦𝑦
𝑃𝑃𝑧𝑧
1

] (6)

 Once 𝐩𝐩′ is determined from 𝐩𝐩 (which is the actual input for inverse kinematics), the joint angles calculations
for θ2, θ3 and θ4 can be performed similar to a planar 3R (R: Revolute) serial robot, as derived in [4]. θ5 would
correspond to the rotation of the last joint and can be one of the Euler angles for the end-effector configuration.
To simplify the formulation, θ5 can be assumed some constant value. Due to space restrictions, the complete
inverse kinematics formulations are not included in this paper. The inverse kinematics equations were initially
developed as a MATLAB/Octave program. The results obtained were compared with those obtained from
RoboAnalyzer software, for the same DH parameters and input values of end-effector configuration (position
and orientation), thus validating the formulations derived from scratch.

5. Simulation Software for Nex Dexter

The CAD model of Nex Dexter robot arm developed as described in Sections 2 and 3 was imported in Virtual
Robot Module (VRM) of RoboAnalyzer. The VRM has a feature that it can integrated with other software or
applications such as MATLAB or MS Excel and act as a visualizer for robot motion [6]. Similarly, Nex Dexter robot
in VRM can be simulated by sending joint angles from another client application developed in C#. The client
application has the inverse kinematics formulations derived in the previous section and has capability of performing
joint and Cartesian jogging of the robot in the VRM. The client application also been integrated with actual Nex
Dexter robot arm using a USB (serial communication) cable. The motion given to the VRM is also sent to the physical
robot. The client application and VRM running on a laptop its integration with physical robot is illustrated in Fig. 6.

 Amogh Patwardhan et al. / Procedia Computer Science 133 (2018) 660–667 667
 Patwardhan et al/ Procedia Computer Science 00 (2018) 000–000 7

[𝑇𝑇𝑒𝑒𝑒𝑒]2 = 𝑇𝑇1

−1 ∗ 𝑇𝑇𝑒𝑒𝑒𝑒 (3)

where 𝑇𝑇1

−1 corresponds to the HTM of Frame 1 with respect to Frame 2. Note that 𝑇𝑇1 was earlier obtained by
multiplying four individual HTM corresponding to each of the DH parameters for Joint 1. Similarly, 𝑇𝑇1

−1 can be
obtained by the multiplication of HTMs corresponding to the opposite sign value of each of the DH parameters and
the order of multiplication being the opposite. The expression for 𝑇𝑇1

−1 is obtained for α1= 90° as

 𝑇𝑇1
−1 = [

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1
− 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1

 0 −𝑎𝑎1
𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1 −𝑏𝑏1 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1

 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 −𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼1 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1
 0 0

 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1 𝑏𝑏1 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1
0 1

] = [
𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1

0 0 0 −𝑎𝑎1
1 −𝑏𝑏1

 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1
 0 0

0 0
0 1

] (4)

Note that the last column of the HTM in Equation 4 does not have a Z component, which also justifies why the end-
effector point will always remain on the XY plane of Frame 2. Let 𝐩𝐩 = [𝑃𝑃𝑥𝑥 𝑃𝑃𝑦𝑦 𝑃𝑃𝑧𝑧]

T correspond to the end-effector
point with respect to Frame 1 and 𝐩𝐩′ = [𝑃𝑃𝑥𝑥

′ 𝑃𝑃𝑦𝑦
′ 𝑃𝑃𝑧𝑧

′]T. The inverse kinematics of 5-axis Nex Dexter robot arm can
be simplified in the following manner:
 θ1 has only effect on 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑦𝑦 and does not influence 𝑃𝑃𝑧𝑧. By looking at the geometry, θ1 can be determined as

𝜃𝜃1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠2(𝑃𝑃𝑦𝑦, 𝑃𝑃𝑧𝑧) (5)

 Origins of Frame 2, Frame 3, Frame 4, Frame 5 and Frame 6 always line on a plane (XY plane of Frame 2). This
plane rotates with respect to YZ plane of Frame 1. Hence, kinematics of end-effector point in Frame 2 can be
simplified as a planar problem. Also, the rotation of last joint (Joint 5) does not have any effect on the position
of the end-effector in Frame 2. The expression for the end-effector point in Frame 2 (𝐩𝐩′) is given by

 𝒑𝒑′ = 𝑇𝑇1
−1 ∗ 𝒑𝒑 =>

[

 𝑃𝑃𝑥𝑥

′
𝑃𝑃𝑦𝑦

′
𝑃𝑃𝑧𝑧

′
1]

 = [

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1
0 0 0 −𝑎𝑎1

1 −𝑏𝑏1
 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1

 0 0
0 0
0 1

] [
𝑃𝑃𝑥𝑥
𝑃𝑃𝑦𝑦
𝑃𝑃𝑧𝑧
1

] (6)

 Once 𝐩𝐩′ is determined from 𝐩𝐩 (which is the actual input for inverse kinematics), the joint angles calculations
for θ2, θ3 and θ4 can be performed similar to a planar 3R (R: Revolute) serial robot, as derived in [4]. θ5 would
correspond to the rotation of the last joint and can be one of the Euler angles for the end-effector configuration.
To simplify the formulation, θ5 can be assumed some constant value. Due to space restrictions, the complete
inverse kinematics formulations are not included in this paper. The inverse kinematics equations were initially
developed as a MATLAB/Octave program. The results obtained were compared with those obtained from
RoboAnalyzer software, for the same DH parameters and input values of end-effector configuration (position
and orientation), thus validating the formulations derived from scratch.

5. Simulation Software for Nex Dexter

The CAD model of Nex Dexter robot arm developed as described in Sections 2 and 3 was imported in Virtual
Robot Module (VRM) of RoboAnalyzer. The VRM has a feature that it can integrated with other software or
applications such as MATLAB or MS Excel and act as a visualizer for robot motion [6]. Similarly, Nex Dexter robot
in VRM can be simulated by sending joint angles from another client application developed in C#. The client
application has the inverse kinematics formulations derived in the previous section and has capability of performing
joint and Cartesian jogging of the robot in the VRM. The client application also been integrated with actual Nex
Dexter robot arm using a USB (serial communication) cable. The motion given to the VRM is also sent to the physical
robot. The client application and VRM running on a laptop its integration with physical robot is illustrated in Fig. 6.

8 Patwardhan et al/ Procedia Computer Science 00 (2018) 000–000

It was observed that joint jogging of physical robot worked as expected but the Cartesian jogging of physical robot
was not satisfactory. This was because the motors of the robot have a resolution of 1° and any decimal value sent to
them are rounded off. However, development of the client application was an experience that can be used to develop
similar software for other robots with better angle resolution.

Fig. 6. Online simulation of Nex Dexter robot arm/manipulator

6. Conclusions

A methodology to develop kinematic model and simulation software for a physical robot is proposed in this paper.
First, the CAD model is developed in Autodesk Inventor followed by automatic extraction of its DH parameters. An
example of Nex Dexter robotic arm is used to demonstrate the proposed methodology. Using the CAD files of each
part, extracted DH parameters and kinematics formulation, a simulation software has been developed and reported.
The software has capability to perform joint and Cartesian jogging in the simulation environment as well as on the
real robot. The same procedure can be followed to develop online and offline simulation software for any physical
robot.

Acknowledgements

The authors would like to acknowledge Dr. Anant Malewar of Nex Robotics Pvt. Ltd., Mumbai, India for providing
the robot arm and also for helping in understanding how it can be controlled from a computer.

References

[1] Jaramillo-Botero, Andres, Antonio Matta-Gomez, Juan Fernando Correa-Caicedo, and Wilber Perea-Castro. (2006) “Robomosp.” IEEE
Robotics & Automation Magazine 13(4): 62-73.

[2] Othayoth, Ratan S., Chittawadigi, Rajeevlochana G., Joshi, Ravi P., and Saha, Subir K. (2017) “Robot kinematics made easy using
RoboAnalyzer software.” Computer Applications in Engineering Education 25(5): 669-680.

[3] Denavit, Jacques., Hartenberg, Richard S., (1955) “A Kinematic Notation for Lower-pair Mechanisms Based on Matrices.” ASME Journal of
Applied Mechanisms 22(2): 215-221.

[4] Saha, Subir Kumar. (2014) “Introduction to Robotics.” Second edition, Tata McGraw Hill Publications, New Delhi, India.
[5] Rajeevlochana, C. G., Saha, Subir K, Kumar, Shivesh. (2012) “Automatic extraction of DH parameters of serial manipulators using line

geometry.” In Proceedings of the 2nd International Conference on Multibody System Dynamics.
[6] Sadanand, Ratan., Chittawadigi, Rajeevlochana G., Joshi, Ravi P., and Saha, Subir K. (2015) “Virtual robots module: an effective visualization

tool for robotics toolbox.” In Proceedings of the 2nd International Conference on Advances in Robotics.

(a) Implementation

Client application

Physical robot Laptop

VRM

Virtual Robot Module (DLL)
Updates new robot configuration

Computer

USB

Client Application (C#)
 Takes user input
 Joint jogging: increment /decrement

particular joint angle
 Cartesian Jogging: Perform inverse

kinematics for incremental postion.
Choose the solution that is closest to
the current set of joint angles

 Update VRM and physical robot Nex Dexter Robot
Each joint moves to
desired value

(b) Overview of the system architecture

