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Abstract 
 
Robotics has emerged as a major field of research and application over the 

years, and has also found a place in the curriculum of universities. Robotics as a 
course is challenging both for the teachers to teach and the students to learn as it 
involves 3D transformations, algebraic and differential equations, etc., which are 
difficult to understand. Several robotics learning software have been developed have 
helped to ease the learning of robotics as a subject. A similar attempt was made in 
developing RoboAnalyzer, a 3D model based robotics learning software that 
modelled a serial robot based on its DH-parameters. It could perform forward 
kinematics and show animation and graph plot as outputs. In this paper, further 
development of RoboAnalyzer is reported in the form of addition of inverse and 
forward dynamics analyses of a generic serial manipulator. The important 
contributions of this paper lie in the development of algorithms using an object 
oriented modelling approach and the Decoupled Natural Orthogonal Complement 
(DeNOC)-based recursive formulation. A KUKA KR5 robot was modelled in the 
proposed software, and the results were verified with those obtained using the 
Dynamic Simulation module of Autodesk Inventor. RoboAnalyzer can be 
downloaded for free from http://www.roboanalyzer.com and can be used almost 
instantly. 

Keywords: DeNOC, DH Parameters, Recursive Robot Dynamics, Robot Analysis, 
Robotics Learning Software. 

1 Introduction 
Robotics has evolved from a research interest to a widely used field today. It is 
related to design, development, control and application of robots. It finds its 
application in several industries such as automobile, electronics, medical healthcare 
and space. As a result, it has gained enormous importance in the recent past and finds 
its place in curriculum of universities.  
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Generally, the mathematics involved in the study of robotics, e.g., kinematics, 
dynamics, etc. is difficult to understand by students and difficult to explain by a 
teacher. It involves 3D transformations, solution of algebraic equations in kinematics 
and solution of differential equations in dynamics that are complex in nature. In 
order to make learning and teaching of robotics easier, several software/toolkits have 
been developed over a period of time. They are in the form of a desktop application 
using OpenGL [1-2], toolkit for MATLAB [3-4], LabVIEW [5] and as an internet 
service using Virtual Reality Markup Language (VRML) [6-7]. However, most of 
them cater only to certain examples of serial manipulators and do not give flexibility 
to the end user to change the manipulator’s architecture according to his/her needs 
[8]. Commercial multibody system software like ADAMS, DADS, RecurDYN, 
Autodesk Inventor, etc. on the other hand provide a lot of flexibility, however, 
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require users to develop the CAD model of the robot first before they can analyze it. 
To ease out the above mentioned difficulty for students and teachers, RoboAnalyzer 
is being developed as an independent desktop application and it encourages learning 
the physics of a robot’s motion first before learning the underlying mathematics. In 
the earlier version of RoboAnalyzer [8], it could model a serial manipulator based on 
its representation using the well-known Denavit and Hartenberg (DH) [9] 
parameters. One could perform forward kinematics and see animation as shown in 
Fig. (1) and view the graph plots as output. 

 
Figure 1: RoboAnalyzer animation of a 3 degree-of-freedom serial manipulator 
 

In this paper, dynamics modules of RoboAnalyzer are introduced. For that, the 
paper is organized as follows: Section 2 explains RoboAnalyzer and its dynamics 
algorithms; Section 3 illustrates the use of RoboAnalyzer in analyzing the dynamics 
of an industrial robot, KUKA KR5 and its validation with the results obtained using 
the Dynamic Simulation module of Autodesk Inventor. Finally, conclusions are 
given in Section 4. 

2 RoboAnalyzer 
Concept of Object Oriented Modeling (OOM) has become the de-facto standard of 
software development [10]. It is used in most engineering software applications and 
is considered to be effective for a multibody dynamics software [11-14] as the real 
life objects such as robot, links and joints can be mirrored by respective software 
objects as shown in Fig. (2), thus helping in robust development and maintenance of 
the software. For the development of RoboAnalyzer, Visual C# programming 
language was chosen for various merits mentioned in [15].  

2.1 Robot Dynamics 

The Decoupled Natural Orthogonal Compliment (DeNOC) [16-18]-based approach 
allows one to obtain the recursive order (n) – ‘n’ being the number of links in a 
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integrator developed for the purpose of using in RoboAnalyzer in Visual C# [19] to 
determine the joint velocities and positions. On completion of FDyn analysis, the 
animation of the robot motion and graph plots of the joint values can be viewed as 
outputs. 

Start RoboAnalyzer IDyn

DH parameters (b, θ, a, α), mass matrix (ۻ௜), inertia tensor (۷௖), centre of mass (ܚ௜), gravity (ρ), 
time step (ts), total time (T), degree-of-freedom (n) and joint trajectories (ߠ, ሶߠ ,  (ሷߠ

time = 0 
i = 1 

 

 

 

 

 
Figure 3: Flowchart of IDyn algorithm 
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Figure 4: Flowchart of FDyn algorithm 
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3 An Illustration: KUKA KR5 
The IDyn and FDyn modules were developed for RoboAnalyzer to carry out inverse 
and forward dynamics of various planar and spatial serial manipulators with revolute 
and prismatic joints. In this paper, the analyses of a 6-axis industrial robot, namely, 
KUKA KR5 [22], is reported.  

3.1 The DH parameters of KUKA KR5 

CAD model of KUKA KR5 robot was imported [22] and assembled in Autodesk 
Inventor software, as shown in Fig. (5a). The co-ordinate frames were attached to the 
robot links and the DH parameters were determined as given in Table 1. These 
parameters were given as inputs to RoboAnalyzer and the 3D model of KUKA KR5 
robot was generated, as shown in Fig. (5b). The mass and inertia properties of all the 
robot links were retrieved from the Autodesk Inventor software and then put as 
inputs to RoboAnalyzer for the dynamic analyses. 
 

 
(a) Assembly in Autodesk Inventor           (b) 3D model in RoboAnalyzer 
Figure 5: KUKA KR5 robot 
 

Table 1: DH parameters of KUKA KR5 
 Joint b (mm) θ (degree) a (mm) α (degree) 

1 400 0 (variable) 180 90 
2 135 0 (variable) 600 180 
3 135 0 (variable) 120 -90 
4 620 0 (variable) 0 90 
5 0 0 (variable) 0 -90 
6 0 0 (variable) 0 0 

 
 
 
 
 
 
 
 

 

3.2 Inverse dynamics of KUKA KR5 

The inverse dynamics was performed using the IDyn module of RoboAnalyzer for 
all the joint angles of KUKA KR5 varying from 0˚ to 60˚ in a cycloidal fashion [23] 
as given by Eq. (1):  
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where θi is the joint variable, t is the current time and T is the total time. 
 
The joint torques for joints 2 and 3 only are shown in Figs. (6a) and (6b) 
respectively. Other joint torques are not shown due to space limitations. However, all 
the joint torques were compared with those obtained in the Autodesk Inventor as 
indicated in Figs. (6a-b) as “INV”, whereas the results from RoboAnalyzer are 
shown as “RA”.  
 

 
                              (a) Joint 2                (b) Joint 3 
Figure 6: IDyn results of KUKA KR5  

3.3 Forward dynamics of KUKA KR5 

The FDyn module of RoboAnalyzer was used to study the free-fall simulation of 
KUKA KR5 under the action of gravity. The variation of the joint angles for joints 2 
and 3 are shown in Fig. (7), whereas the positions along X-and-Z directions are 
shown in Fig. (8). The results are compared with those obtained in Dynamic 
Simulation module in Autodesk Inventor for the same initial conditions.  
 

                           (a) Joint 2                 (b) Joint 3 
 

Figure 7: FDyn results of KUKA 
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                    (a) X-coordinate of EE     (b) Z-coordinate of EE 
Figure 8: The end-effector (EE) positions  

4 Conclusions 
An attempt to make robotics learning easier was made in the form of RoboAnalyzer. 
Inclusion of the inverse and forward dynamics modules for generic serial 
manipulators in RoboAnalyzer is reported in this paper which will make students 
understand the dynamic behaviour without going through the details of the dynamic 
formulation. As a result, even an undergraduate student will appreciate the physics 
and will be capable of designing a better robot for any practical purpose. To widen 
the use of the software, it has been made available free through 
http://www.roboanalyzer.com. 
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