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ABSTRACT 

Serial manipulators/robots are used extensively in industries to perform various tasks such as pick-and-
place operation, painting, arc-welding, assembly of components etc. To perform tasks accurately, exact 
kinematic parameters of the manipulator are required. Note that these parameters are generally 
represented using the well-known Denavit-Hartenberg (DH) parameters. Typically, a set of nominal DH 
parameters are provided by the robot manufacturers, which may not be exact due to assembly errors etc. 
Hence, there is a need to know them exactly. In this paper, a novel analytic method is proposed to extract 
DH parameters of a robot manipulator. For this, each joint axis of a manipulator consisting of a direction 
and a point on it are provided as input to the proposed algorithm. The exact DH parameters are then 
extracted recursively from base link to the end-effector using the concepts of Plücker coordinates and 
Dual Vector Algebra. The algorithm has been implemented as an addin/plugin inside Autdoesk Inventor 
CAD software, which determines the DH parameters of a serial manipulator from its CAD model.  

1. INTRODUCTION 

Serial manipulators/robots usually have a poor accuracy as compared to their repeatability. The reason 
could be a non-exact kinematic model, due to which a manipulator reaches configuration A instead of the 
desired configuration B. Since the repeatability is higher, the manipulator reaches configurations closer to 
A whenever it is asked to reach configuration B. The inaccuracy in kinematic model could be due to 
manufacturing errors, assembly issues, wear and tear, permanent bending of the links due to fatigue, etc. 
Note here that the well-known Denavit-Hartenberg (DH) parameters [4] are typically used to define the 
robot kinematics. Over the years, researchers have proposed various methods to determine these DH 
parameters. For example, [1] and [2] identified them directly, whereas [11] conceptualized and identified 
what the authors call S-Model parameters from which DH parameters are determined.  
 
Since the DH parameters are the most common and standard way of representing a robot architecture, 
some of the important methods to find them are described here. In [2], it requires the location and 
orientation of the joint axes as inputs, which are determined by rotating one joint at a time and locking the 
others. Such rotation will result in a circular motion by the end-effector. Hence, by tracing the end-
effector positions one can determine the circle and its axis which is the axis of the revolute joint causing 
the circular motion. These joint axes are then used to determine the exact DH parameters of the serial 
manipulator at hand using Vector Algebra. In [1], the DH parameters were determined by applying the 
methodology introduced in [11], which uses the plane of rotation and the centre of rotation. Further it is 
extended to use the radius of rotation and a plane translated along the axis of rotation. The idea developed 
by [6] was also used in [1] where an extra parameter (ߚ) was introduced to deal with parallel or near 
parallel joint axes.  
 
In this paper, we propose a novel analytical methodology to extract the DH parameters of a serial 
manipulator with revolute joints only using line geometry, Plücker coordinates and Dual Vector Algebra. 
It requires a point on the joint axes and its direction. It then determines whether two consecutive joint 



axes are parallel, intersecting or skewed [7]. It then analytically determines the DH parameters using the 
Plücker coordinates [3] and the Vector Algebra. Implementation of the proposed methodology is simpler 
and elegant compared to the one reported in [2]. It determines one set of DH parameters at a time in a 
recursive manner from the base link to the end-effector, which is more efficient and elegant than 
determination using Paul’s backwards multiplication technique [1]. The paper is organized as follows: 
Section 2 introduces the concept of line geometry, followed by Plücker coordinates and Dual Vector 
Algebra. Section 3 then gives the proposed analytical methodology. An implementation of the proposed 
methodology is presented in Section 4, followed by conclusions in Section 5. 

2. LINE GEOMETRY 

A straight line in the 3D space can be represented using a unit vector (e) to represent its direction and a 
position vector (c) to represent a point on the line, both defined in a specific coordinate frame of reference 
(say, Frame F), as shown in Figure 1(a). Alternatively, Plücker coordinates [3] can be used to represent 
the same line using its unit directional vector (e) and the moment vector (k), as shown in Figure 1(b). 
Equation (1) defines the Plücker coordinates, where s is the 6-dimensional column vector. 
 

      
 
 (a) Line in 3D space                (b) Plücker coordinates representing a line       (c) Two lines in 3D space 

Figure 1: Line geometry in 3D space 
= ܛ  ቂ ܋܍ × ܍ ቃ = ቂ ܓ܍ ቃ (1) 
 
In Equation (1), e is the 3-dimensional unit vector parallel to the line, and c is the 3-dimensional position 
vector of the point C on the line. The 3-dimensional vector k = ܋ ×  then corresponds to the moment ,܍
vector. 

2.1. Pair of Straight Lines 

Two lines in the 3D space are intersecting, parallel, collinear or skewed to each other. An elegant method, 
as reported in [7], to determine their relationship using the concepts of Dual Vector Algebra [5] is used 
here. Note that the Plücker coordinates used to represent a line can be expressed as a dual vector (ܛො), 
which has a real part (܍) and dual part (ܓ), i.e.,  

ොܛ  = ܍ + εܓ  
where ε2 = 0. 

(2) 

 
For any two lines represented as dual vectors, say ܛොଵ and ܛොଶ, line dot product, as illustrated in Figure 1(c), 
results in a dual number whose dual part indicates if the lines are skewed or not. For non-skewed lines, 
the real part determines if the lines are parallel or intersecting. Consider this result of the line dot product 
[7] as given below:  

.ොଵܛ  ොଶܛ = ଵ܍) + εܓଵ). ଶ܍) + εܓଶ) 
                                                         = .ଵ܍ ଶ܍ + ε(܍ଵ. ଶܓ + .ଵܓ     (ଶ܍
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          = cos(ߚ) + ε[−d sin(ߚ)]  
  
where ߚ is the angle between the two lines, and d is the distance measured along common normal. 
 
In our proposed methodology, the above concept of line dot product is used to determine the relationship 
between two successive joint axes of the serial manipulator at hand.  

2.2. Intersecting Lines 

Plücker coordinates of two lines s1 and s2 are used here to find their intersection point (P), as shown in 
Figure 2(a). The intersection point denoted with a vector p as reported in [3] is as below:  
= ܘ  ଵܓ  .ଶ܍ଶܓ × ଵܓ  or ଶܓ × .ଵ܍ଵܓ ଶܓ for .ଵ܍ ଶܓ − .ଶ܍ ଵܓ = 0  (4) 

  

     
 
         (a) Intersecting lines                    (b) One of the intersecting lines                    (c) Parallel lines 
                                                                     passing through origin      

Figure 2: Intersecting and parallel lines 
 

The expression for vector p is more elegant and compact compared to the one using Line Geometry or 
Vector Algebra. If either of the line passes through the origin OF the moment k of that line becomes null 
(0), and hence the intersection point P cannot be determined using Equation 4. Hence, a novel method is 
proposed to overcome this inability by following the steps below. This is illustrated in Figure 2(b). 

1. Find a point OG at unit distance from OF along the common normal of ܍ଵ and ܍ଶ, i.e.,  [ܗୋ] = [ଵ܍] ×    (5)[ଶ܍]

 
2. Define a new coordinate frame (Frame G) with origin at OG, and the coordinate axes parallel to 

those in Frame F. The transformation from Frame F to Frame G is a pure translation with no 
rotation. 

3. Vectors ܍ଵ and ܍ଶ denoting the directions are invariant after transformation from Frame F to          
Frame G, i.e., 
ୋ[ଵ܍]  = ୋ[ଶ܍]  ;  [ଵ܍] =  [ଶ܍]

 
(6) 

 
4. Vectors ܋ଵ and ܋ଶ  are transformed to Frame G i.e., 

ୋ[ଵ܋]  = [ଵ܋]  − ୋ[ଶ܋]  ;  [ୋܗ] = [ଶ܋] −   (7)[ୋܗ]
 

5. Vectors ܓଵ and ܓଶ being the moments are transformed to Frame G [5], i.e.,  
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ୋ[ܓ]  = [ଵܓ]  + [ୋܗ]  × ୋ[ଶܓ]  ;  [ଵ܍] = [ଶܓ] + [ୋܗ] ×  [ଶ܍]
 

(8) 

6. Intersection point [ܘ]ୋ is then found in Frame G as 
ୋ[ܘ]   = ୋ[ଵܓ]  × .ୋ[ଶ܍]ୋ[ଶܓ] ୋ[ଵܓ] or ୋ[ଶܓ] × .ୋ[ଵ܍]ୋ[ଵܓ] ୋ[ଶܓ]  (9) 

 
7.  Intersection point [ܘ] is next found in Frame F as [ܘ] = [ୋܗ] +  ୋ (10)[ܘ]

The above approach is used to find the intersection point of two successive joint axes of a serial 
manipulator, which plays an important role in the extraction of the DH parameters.  

2.3. Parallel Lines 

Between two parallel lines (ܛଵand ܛଶ), as shown in Figure 2(c), no unique solution exists for a line that is 
a common normal. One of the solutions can be determined by putting a condition that it passes through an 
arbitrary point C1. To achieve this, a vector (܍ଵᇱ ) normal to ܋ଵଶ and ܍ଵ is determined as given below: 
ଵᇱ܍  = ଵଶ܋ ×  ଵ (11)܍

where vectors ܋ଵଶ and ܍ଵare indicated in Figure 2(c). Moreover, a unit vector (܍ଵᇱᇱ) normal to ܍ଵ and ܍ଵᇱ  is 
determined as follows: 
ଵᇱᇱ܍  = ଵ܍ × ଵᇱ܍||ଵ܍|ଵᇱ܍ |  (12) 

Next, a new set of Plücker coordinates ܛଵᇱᇱ defining a new line perpendicular to ܛଵ is introduced below: 
ଵᇱᇱܛ  =  ଵ܋ଵᇱᇱ܍ × ଵᇱᇱ܍ ൨ (13) 

 
Using the lines ܛଵᇱᇱ and ܛଶ one can now find the point of intersection P or vector p using the methodology 
presented in Section 2.2.  

2.4. Skewed Lines 

Between two skewed lines (ܛଵand ܛଶ), a unique solution exists that is normal to both the lines, as shown 
in Figure 1(c). These points P1 and P2 on lines ܛand ܛ respectively are determined using the Plücker 
coordinates [3] i.e.,  

ଵܘ  =  ቈ    ܓଶ. ܖ − cos(ߚ) .ଵܓ (ߚ)sinܖ  ଵ܍ + ଵ܍ × ଵܓ  

  

(14) 

ଶܘ  =  ቈ −ܓ. ܖ + cos(ߚ) .ଶܓ (ߚ)sinܖ  ଶ܍ + ଶ܍ × ଶܓ  

  

(15) 

where ܖ = ଵ܍  ×  is the angle between the lines as indicated in Figure ߚ ଶ is the common normal and܍ 
1(c). Both the vectors ܘଵand ܘଶ are used to extract the DH parameters for two successive skewed joint 
axes. 



3. DENAVIT-HARTENBERG (DH) PARAMETERS 

The links of a serial manipulator usually coupled with single-degree-of-freedom revolute or prismatic 
joints. A coordinate frame is attached to each link, as shown in Figure 3(a). The transformation between 
the Frame i+1 attached to Link i and the Frame i attached to Link i-1 can be represented using four 
Denavit-Hartenberg(DH) parameters [4], where i is the index of the link. Due to the space limitation, only 
the definitions of the parameters illustrated in Figure 3(b) are given below, whereas the details about the 
rules of attaching frames are available in [10]:  

a. Joint Offset (bi): Distance between Xi and Xi+1 along Zi  
b. Joint Angle (θi): Angle between Xi and X i+1 about Zi 
c. Link Length (ai): Distance between Zi and Z i+1 along X i+1 
d. Twist Angle (αi): Angle between Zi and Z i+1 about X i+1 

      
           (a) Coordinate frames attached to each link                 (b) Two successive coordinate frames 

Figure 3: Representation of DH parameters  
 

3.1. Extraction of DH Parameters 

The proposed analytical method to extract the DH parameters of an n-degree-of-freedom serial 
manipulator is presented here. For the sake of simplicity in calculations, the frame attached to the base 
link (Link 0) is identical to the fixed coordinate frame (Frame F) such that points O1 is coincident with 
OF, and the first joint axis (Z1) is along the ZF. For all the subsequent joints, the joint axes, consisting of 
unit vector (ܢ) and the vector ܋ representing a point on the axis need to be provided as input with respect 
to Frame F. The DH parameters are then extracted recursively from base link (Link 0) to the end-effector 
(Link n).  
 
For the first step, i.e., when i = 1, the unit vectors ܢଵ and ܢଶ corresponding to first two joint axes are 
known as they are provided as input. The origin (ܗଵ) of Frame 1 is also known from the assumption and a 
vector to a point (܋ଶ) on second axis is known as input. For each subsequent step i, the two joint axes are 
represented as Plücker coordinates (ܛ and ܛାଵ) as given below: 
ܗ   ܢ] =ܛ  × ]Tܢ ; ାଵܢ] =ାଵܛ   ାଵ܋   × ାଵ]Tܢ  (16) 

 
where Frame i is known from input if i = 1, else it is known from previous step.  
The two axes at hand could be intersecting, parallel or skewed. Dual Vector Algebra, as explained in 
Section 2, is used to determine their relationship. Possible cases are explained below: 

a) Intersecting Axes: The origin (ܗାଵ) of Frame i+1 is the point of intersection of lines ܛ and ܛାଵ 
as explained in Section 2.2. The vector ܠାଵ is the common normal to ܢ and ܢାଵ and one of the 
two possible expression is given below: ܠାଵ = ܢ ×  ାଵ (17)ܢ

              where ܠାଵ is the unit vector along Xi+1  

 ߙ ାࢠ ࢠ

 ߠ

ܽ 

ܾ 

ܼାଵ 

ܻାଵ 

ܺାଵ ܱା  ܼଵ 

ଵܻ ܺ  ܱ
  Link 0 

Link 1 

Link 2 

Link 3 

Frame 1

Frame 2

Frame 3
Frame 4 



b) Parallel Axes: A line (ܛᇱᇱ) is determined which is a common normal to both the lines ܛ and ܛାଵ, 
as explained in Section 2.3. The origin (ܗାଵ) of Frame 2 is then determined as the point of 
intersection of lines ܛᇱᇱ and ܛାଵ. The vector ܠାଵ, a unit vector from Oi to Oi+1, is then given as: 
ାଵܠ  = ାଵܗ − ାଵܗ|ܗ − |ܗ  (18) 

                

c) Skewed Axes: The common normal of two skewed lines (ܛ and ܛାଵ) is determined using the 
methodology of Section 2.4. The point of its intersection with ܛ is ܗᇱ and that with ܛାଵ is the 
origin (ܗାଵ) of Frame i+1.  The vector ܠାଵ is then given as: 
ାଵܠ  = ାଵܗ − ାଵܗ|ᇱܗ − |ᇱܗ  (19) 

 
Once the origin (ܗାଵ) and vector ܠାଵ are found, the Frame i+1 attached to Link i is completely known 
by determining ܡାଵ as:  
ାଵܡ  = ାଵܢ ×  ାଵ (20)ܠ

where ܡାଵ is a unit vector along Yi+1.  

Now both the Frames i and i+1 are known. The DH parameters associated with the transformation 
between them as illustrated in Figure 3(b), are given below: 
 
First, the joint offset b is found as  
 b = ାଵܗ) − .(ܗ   (21)ܢ

Next, the joint angle θ is obtained, i.e., 

 
 θ = ܠ))2݊ܽݐܽ × .(ାଵܠ ,ܢ .ܠ  ାଵ) (22)ܠ

 

The link length a and twist angle ߙ are finally given by 
 a = ାଵܗ) − .(ܗ ߙ  (23)ܠ = ܢ))2݊ܽݐܽ × .(ାଵܢ ,ାଵܠ .ܢ  ାଵ) (24)ܢ

               

The above procedure is repeated until the last joint (i = n). Note that for the last joint, the point On+1 needs 
to be provided as input. For that, it is assumed that ܢାଵ is parallel to ܢ [1, 2]. If the point On+1 lies on 
last joint axis, a unique solution for ܠାଵ cannot be found. In that case, Frame n+1 should be provided as 
input and its treatment is excluded here to keep the approach simple.  
 
The complete working of the proposed methodology as a generic algorithm is shown in Figure 4(a), 
which calls different functions, as shown in Figures 4(b) to 4(f).  

4. IMPLEMENTATION IN AUTODESK INVENTOR  

The proposed analytical method has been implemented as an addin/plugin inside Autodesk Inventor 
software. The CAD assembly of a serial manipulator, as shown in Figure 5 was imported inside the 
Inventor environment. The base of the robot is placed such that the frame attached to it is identical to the 
world coordinate system. Assembly constraints are then defined between the links/parts of the 
manipulator in sequence from the base to the end-effector. 



          
 

Figure 4: Algorithm for the extraction of DH parameters 
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(b) Revolute Joint Function

(c) Angle Between Vectors Function 

(d) Intersecting Joint Axes 

(e) Parallel Joint Axes 

(f) Skewed Joint Axes 

(a) Main DH Extraction Loop 
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The transformation of frame attached to the end-effector with respect to the base achieved by multiplying 
the transformation matrices corresponding to each DH parameter set (callout 3 of Figure 6) matches 
exactly with the transformation matrix determined directly between these two frames using Inventor API 
(callout 4 of Figure 6). The coordinate frames determined were inserted into the CAD model as shown in 
Figure 6 (callout 5) which help in better visualization and understanding of the DH parameters. The DH 
parameters also match with those mentioned in the company’s specifications of KUKA KR5 [8]. 
Similarly, the DH parameters of PUMA 500 industrial robot/manipulator was extracted and verified with 
its specifications available in literature [9]. 

5. CONCLUSIONS 

In this paper, a novel analytical method to extract the Denavit-Hartenberg (DH) parameters is proposed. 
The method requires the joint axes and a point on it as input and uses the concept of Plücker coordinates 
to represent the joint axes of a serial manipulator. Dual Vector Algebra was then used to determine the 
relationship between two successive joint axes and then the DH parameters were determined using Vector 
Algebra, in a forward recursion from base link to the end-effector. The methodology was used as an addin 
developed for Autodesk Inventor, which extracts DH parameters from CAD assembly of industrial 
manipulators/robots. The DH parameters of KUKA KR5 and PUMA 500 manipulators were determined 
from their CAD models and were validated with the existing results. The methodology can be practically 
used to determine the exact DH parameters an actual manipulator by tracing a point on the end-effector 
while rotating one joint at a time. The exact parameters determined can then be used to make 
modifications in its controller or be used as nominal parameters for the error estimation during 
calibration. 
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