
Virtual Robots Module:
An effective visualization tool for Robotics Toolbox

R. Sadanand
Department of Mechanical

Engineering
Indian Institute of
Technology Delhi

New Delhi

ratansadan@gmail.com

R. G. Chittawadigi
Department of Mechanical

Engineering
Amrita School of

Engineering
Bengaluru

rg_chittawadigi@blr.am
rita.edu

R. P. Joshi
Department of Mechanical

Engineering
Indian Institute of
Technology Delhi

New Delhi

ravi2008joshi@gmail.co
m

S. K. Saha
Department of Mechanical

Engineering
Indian Institute of
Technology Delhi

New Delhi

saha@mech.iitd.ac.in

ABSTRACT

An introductory level robotics course mainly comprises the topics

like geometry, kinematics, and dynamics of serial-chain robots.

The description of the robot geometry using the Denavit-

Hartenberg parameters and the kinematic and dynamic analyses

require advanced mathematical concepts and are computationally

intensive for robots with higher degrees-of-freedom. This calls for

the use of robotics learning software, which would effectively aid

the instructor to explain the concepts lucidly, and help the

students in analyzing the mechanics of the robot. Robotics

Toolbox is one such commonly used software, which is a

collection of MATLAB-based functions that support various

dedicated mathematical operations required in mechanical

analysis of robots. RoboAnalyzer is another attempt towards the

same goal, which focuses on the learning of robotics concepts

from the physics of the robot motion. In this paper the integration

of the Virtual Robots Module of RoboAnalyzer with the Robotics

Toolbox is presented. With multiple number of industrial robot

models, the Virtual Robots Module acts as an effective

visualization add-in for the analysis performed using the Robotics

Toolbox. The proposed visualization add-in can be used from

software like MATLAB, MS-Excel, etc. The Virtual Robots

Module allows improved visualization and easy simulation of

industrial robot models for robotics research and education.

Categories and Subject Descriptors

I.2.9 [Robotics]: Kinematics and dynamics, I.3.8 [Computer

Graphics]: Applications

General Terms

Experimentation, Verification.

Keywords

Robot simulation, robot visualization, robotics toolbox.

1. INTRODUCTION
Robotics based courses are now being introduced even in the

undergraduate level curriculum. Majority of the introductory level

courses on robotics emphasize on the mechanics of serial-chain

robots due to their extensive applications in industry and research.

The modelling and analysis of serial-chain robots involves topics

that are not intuitive to teach or learn. Understanding the

geometry, kinematics and dynamics of serial robots can be made

easy and intuitive with the use of robotics teaching software. This

would aid the teachers in explaining the concepts in robot

mechanics with better clarity. The visualizations and simulations

can assist the students in acquiring a better understanding of the

concepts and in verifying the results of the simulation. The ability

of robotics teaching software to illustrate the concepts in robot

geometry and mechanics, using visualizations, is a crucial factor

in making it an effective learning aid. At the fundamental level,

robot mechanics involves concepts from vector mechanics,

coordinate transformations, matrices, etc. Effective visualization

of the same, along with the robot model and its motion, can

complement an introductory level robotics course, as well as robot

simulation used in research to a great extent.

A number of robotics teaching aids are being used nowadays.

Robotics Toolbox [1, 2] using MATLAB is a very popular

teaching and simulation tool that is being used in robotics courses.

It is a collection of MATLAB-based functions dedicated for the

mathematical operations and functions used in robot mechanics

(e.g. homogeneous transformation matrices, trajectory generation,

manipulator Jacobian, etc.). It allows the users to model, simulate,

and analyze serial-chain robots using readymade functions and

exploit the computational capabilities of MATLAB for further

simulation and analysis. Apart from serial-chain robots, it also has

modules for mobile robotics and path planning. RoboAnalyzer [3-

5] is another attempt at robotics teaching software that allows easy

visualization and analysis of kinematics and dynamics of serial-

chain robots of various degrees-of-freedom.

Note here that the Robotics Toolbox uses the default plotting

environment of MATLAB for the visualization of robot models

and simulation of robot motion. By default, the robot models are

rendered as schematic skeleton models only. Although the

Robotics Toolbox supports rendering of robots when the STL files

of the links are available, the method is not intuitive and requires

the user to configure the robot geometry and graphical rendering.

An effective alternative would be to have a separate visualization

module, which can display readymade as well as skeleton robot

models with better visualization capabilities.

mailto:ratansadan@gmail.com
mailto:rg_chittawadigi@blr.amrita.edu
mailto:rg_chittawadigi@blr.amrita.edu
mailto:ravi2008joshi@gmail.com
mailto:ravi2008joshi@gmail.com
mailto:saha@mech.iitd.ac.in

In this paper, an implementation of Virtual Robots Module of

RoboAnalyzer is proposed as a visualization add-in for Robotics

Toolbox. The proposed add-in will help in visualization and

simulation of six-axis serial-chain industrial robots using the

computational capabilities of Robotics Toolbox in MATLAB, as

well as other standalone applications like Microsoft Excel. The

significance of the add-in lies in the fact that it eliminates the time

spent on modelling and rendering a robot model for simulation

and research purposes. It aids students and researchers to visualize

the simulation results of commonly used industrial robots with

ease. The computational capabilities of Robotics Toolbox and the

graphical environment of Virtual Robots Module are integrated

into a single MATLAB class. An overview of the features and

capabilities of Robotics Toolbox and Virtual Robots Module of

RoboAnalyzer are given in Section 2 and Section 3, respectively.

Section 4 discusses on how the Virtual Robots Module has been

integrated with the Robotics Toolbox as an effective visualization

add-in. The use of Virtual Robots Module from other standalone

applications like Microsoft Excel for robot visualization is

explained in Section 5. Finally the conclusions are given in

Section 6.

2. ROBOTICS TOOLBOX
The Robotics Toolbox [1] is a computational tool for analysis of

mechanics of serial manipulators. Apart from serial-chain robots,

the latest version also supports analysis and path planning of

mobile robots. It is basically a collection of MATLAB-based

functions that support the various mathematical constructs which

are pertinent to the kinematic and dynamic analyses of robots. A

related Machine Vision Toolbox [2] is also available to aid the

image processing and visual servoing in robotics. The Robotics

Toolbox can be used for computations related to the following

topics in robotics - homogeneous transformations, differential

motion, trajectory generation, mechanics of serial link

manipulators, path planning and localization of mobile robots, and

graphical rendering of results. The interfaces with other robot

simulation packages like V-REP [6], ROS [7], etc. are also

available. The integration of Robotics Toolbox and V-REP is

implemented in the latest available version of the former.

Robotics Toolbox uses the object oriented programming approach

for creating the software counterpart of a serial-link robot. A

‘SerialLink’ class with suitable methods and properties is used to

represent any serial-chain robot. The robot geometry is described

using the widely accepted convention of Denavit and Hartenberg

(DH) parameters [8]. A separate ‘Link’ class is used to represent a

robot link and its associated properties. A number of ‘Link’

objects can then be combined to create a ‘SerialLink’ object. The

‘Link’ objects can be created by specifying the DH parameters of

the robot.

A visualization of the schematic skeleton model of KUKA KR 5

Arc robot using the Robotics Toolbox is shown in Figure 1. A

teach pendant for joint-level jogging is also shown in the plot

window, which allows the user to change each of the joint angles

individually. A ‘SerialLink’ object can be created once the DH

parameters of the robot are known.

2.1 Some important functions
The relevant functions, classes, and methods of the Robotics

Toolbox, which are used to integrate the Virtual Robots Module

of RoboAnalyzer as visualization add-in, are given in Table 1.

Table 1. Relevant classes and methods of Robotics Toolbox

Class / Method Description

SerialLink Class that represents a serial-chain robot

Link Class that represents a robot link

SerialLink.theta,
SerialLink.d,

SerialLink.alpha,

Serialink.a

Access the values of the DH parameters of

the SerialLink object

SerialLink.fkine(q)
Returns the HTMa of the robot end-effector

corresponding to joint state (q)

SerialLink.jacob0(q)
Returns the manipulator Jacobian
corresponding to joint state (q)

transl(x, y, z)

HTM corresponding to a translation of the

coordinate frame by x, y, and z along the

X,Y, and Z axes

trotx(a), troty(b), trotz(c)

Returns the HTMs corresponding to the

rotation of the coordinate frame by a given

angle along the axes

jtraj(qi, qf)
Returns the joint trajectory between the

initial (qi) and final (qf) joint states

tr2rpy(H)
Returns the Roll-Pitch-Yaw angles from the
HTM (H)

a.HTM: Homogeneous Transformation Matrix

2.2 Visualization of Robots in Robotics

Toolbox

The ‘SerialLink’ object of the Robotics toolbox has a ‘plot’

method, which uses the MATLAB’s plot window to render the

robot model, as shown in Figure 1. However, the ‘plot’ method of

the toolbox has a limitation that it can render only a schematic

model of the robot. The coordinate frames (DH frames) attached

to the robot are not displayed by default, except for the frame at

the end-effector. The other DH frames attached to the robot links

have to be manually configured by the user. In order to fill these

gaps in visualization aspect of Robotics Toolbox, the Virtual

Robots Module of RoboAnalyzer is modified and integrated as an

add-in for the toolbox. The details of the implementation are

presented in Section 4.

3. VIRTUAL ROBOTS MODULE

The Virtual Robots Module (VRM) is a part of the RoboAnalyzer

teaching software. It is primarily developed as a module of

RoboAnalyzer, which would allow the user to visualize and

simulate the virtual models of commonly used industrial robots.

The VRM’s capabilities include visualization of 18 industrial

robots, joint level motion of robots, and straight line point-to-

Figure 1. Skeleton Model of KUKA KR5 Arc in Robotics

Toolbox

Teach

pendant

End effector

configuration Skeleton model

of the robot

point motion of the robot in the Cartesian space. The user

interface of VRM in RoboAnalyzer software is shown in Figure 2.

The primary objective of the VRM in RoboAnalyzer software is

to provide a virtual environment, where the model of an actual

industrial robot can be simulated using a teach pendant like user

interface. The joint and Cartesian motion panels allow the motion

of the robot model, similar to the jogging done using a robot teach

pendant [5]. The VRM also updates and displays the HTM

corresponding to the robot end-effector, as well as the end-

effector configuration in terms of its position and Roll- Pitch-Yaw

angles.

A MATLAB add-in was later released for the simulation of

KUKA KR5 Arc robot model, using which the motion of the

robot can be simulated after generating the joint trajectories and

supplying them as input from MATLAB. This was possible by

developing the Virtual Robots Module as a Component Object

Model (COM) Server, which can interact with other software,

which acts a COM Client.

3.1 Virtual Robots Module as COM Server

The Virtual Robots Module was implemented as a COM Server in

Microsoft .NET Framework 2.0 using Visual C# programming

language. OpenTK, an OpenGL wrapper for C# was used to

generate the visualization of robot models using the CAD files of

the robot links in STL format. At the software level, Object

Oriented Programming was used to realize the visualization and

simulation in the Virtual Robot Module. The schematic of the

implementation in .NET and the C# classes are shown in Figure 3.

The CAD files of the robot links are supplied in the STL format.

The CAD files are rendered based on the robot geometry specified

in an XML file. The classical method of the DH parameters [8] is

used to describe the robot architecture.

Using the DLL (Dynamic Link Library) files of VRM and

OpenTK, the COM Client can access the visualization and

analysis capabilities of VRM and use it to display the robot

models from the available files. In the typical style of object

oriented programming, a ‘VirtualRobotServer’ object can be

created by the COM clients, which will have the necessary

methods for loading and visualizing a robot. The methods of

Virtual Robot Module that are exposed to the COM Clients like

MATLAB and MS Excel are listed in Table 2 along with the

relevant description.

Table 2. Methods of VirtualRobotServer Object

Method Description of the Method

ShowAvailableRobots
List the robots whose files are available

for visualization

LoadRobot

Load the parameters and properties of a

required robot model on the server from

the available ones

DisplayRobot
Display the robot model currently loaded
in the server

UpdateRobot

Change the joint variables of the loaded

robot and display the updated robot
configuration

GetNoofJoints
Get the total no. of robot joints (Degrees

of Freedom)

GetJointAngle
Get the value of the joint angle for a

given robot joint

GetJointOffset
Get the value of the joint offset for a

given robot joint

GetLinkLength
Get the value of the link length for the

required robot joint

GetTwistAngle
Get the value of the twist angle for the
required robot joint

GetJointVariableLimitMax
Access the lower limit of value for the

required joint variable of the robot

GetJointVariableLimitMin
Access the upper limit of value for the

required joint variable of the robot

GetEETransformation
Return the HTM of the robot end-effector
for a given joint configuration

DisposeRobot
Delete the reference to the loaded robot

object from the COM server

PlotTrace
Plots the trace of the end effector by
default. Can be enabled/disabled as

required.

The ‘VirtualRobotServer’ object can be created, following which,

the methods listed in Table 2 can be used to load and visualize the

available robots from any COM Client. The VRM server reported

in this paper can visualize up to 18 six-axis serial-chain robots

that are used in industrial applications. The robot geometry and

specifications are described in an XML file, based on which the

VRM server renders the robot model for visualization. New robot

models can be added to the server by supplying the CAD files of

the links in the STL format and mentioning the DH parameters in

the XML file corresponding to the robot model.

Figure 2. User Interface of Virtual Robots Module in

RoboAnalyzer

Robot

model

End-effector

trace

Teach pendant

interface

C# Classes

VirtualRobot

Robot

Link

Revolute Joint

World

OpenTK

MATLAB MS Excel

COM Server

COM Clients

Figure 3. Implementation of Virtual Robots Module in C# .NET

Framework

STL Files

XML File

The VRM Server (i.e., the ‘VirtualRobotServer’ object) can be

called from any COM supported client and hence, the methods

mentioned in Table 2 are generic. This is a powerful feature, as

basic functions like display of robot model, calculation of HTMs,

etc. can be done from commonly used applications like MS Excel,

even in the absence of a computational tool like MATLAB.

4. INTEGRATION OF VRM WITH

ROBOTICS TOOLBOX

In order to combine the computational features of Robotics

Toolbox and the visualization capabilities of VRM, a MATLAB

class was implemented using object oriented programming. A

‘VRM_Robot’ class was created in MATLAB, which can access

both the Robotics Toolbox and VRM, thus integrating the

capabilities of both the software. The computations involved in

robot analysis can be performed using the methods of Robotics

Toolbox mentioned in Table 1, while the visualization of robot

and its motion can be done using the methods of VRM presented

in Table 2. For the ease of the user, the ‘VRM_Robot’ class has

readymade functions for creating the ‘SerialLink’ object of the

robot, performing the forward and inverse kinematics, and joint

and Cartesian space motion of the robot. The details of the

implementation and use are given in the following subsections.

4.1 VRM_Robot class in MATLAB

The important methods and fields of the ‘VRM_Robot’ class in

MATLAB that a user can access for robot analysis and simulation

are shown in Table 3 and Table 4, respectively. After creating an

instance of the ‘VRM_Robot’ class in MATLAB environment,

the relevant fields and methods can be accessed to load, simulate

and visualize the robot models. The schematic of the working is

shown in Figure 4. Using MATLAB scripts, the functionalities of

Robotics Toolbox and Virtual Robot Module are made available

to the user.

The use of ‘VRM_Robot’ class for analysis and application can be

done in MATLAB. From the available robot models, the user can

load one of the robot models using the ‘LoadRobot’ method, in

which the XML file corresponding to the robot is read and a

‘SerialLink’ object from Robotics Toolbox is configured as per

the DH parameters and the joint limits. Following this, the user

may perform the forward and inverse kinematics, display the

robot model, visualize the motion of the robot, and move the robot

model in the joint space as well as Cartesian space. These can be

done by making use of the methods mentioned in Table 3 and

Table 4.

4.2 Application of VRM_Robot class

The user interface of the VRM add-in for visualization is shown

in Figure 5, in which a KUKA KR5 Arc robot is displayed.

The necessary data regarding the robot and the current HTM for

the end-effector are in-built into the VRM add-in for the

convenience of the users, enabling them to monitor the position

and orientation of the robot end-effector. Important details of the

robot such as the payload, weight, etc., are also indicated in the

add-in. In order to give a brief idea about using the ‘VRM_Robot’

class, brief code snippets are given below for different types of

analysis.

Table 3. Fields of VRM_Robots Class

Fields Description

jointState Current joint configuration of the robot

initialJointState Initial joint configuration of the robot

finalJointState Final joint configuration of the robot

jointPositionList List of joint variable values for a trajectory

rtbSerialLinkObject SerialLink object of Robotics Toolbox

vrmServer VirtualRobotServer object of VRM

Table 4. Methods of VRM_Robot Class

Methods Description

AvailableRobots
Display the robot models installed in

VRM

CartesianMotionAbsolute

Move the end-effector of the robot in the

Cartesian space with respect to the world
coordinate frame

CartesianMotionRelative
Change the pose of the end-effector

relative to its current pose.

DisplayRobot Visualize the robot model

ForwardKinematics
Forward kinematics simulation of the

robot between two joint configurations

InverseKinematics
Multiple solutions for the inverse

kinematics of a wrist-partitioned robot

LoadRobot Load an available robot model

MoveRobot
Move the robot in the joint space, between
two specified joint configurations

Virtual Robot

Module

Robotics

Toolbox

MATLAB scripts

- createSerialLinkObject

- AnimateVRM

- InverseKinematics6RWP
- InverseKinematicsWrist

- VRM_Robot Methods in Table 2

Methods in Table 1

Methods in Table 4 Fields in Table 3

Figure 4. Schematics of implementation of VRM_Robot class in

MATLAB End effector transformation matrix

Robot

model

Joint angle

values

Robot

details

Figure 5. VRM Visualization add-in launched from MATLAB

4.2.1 Loading and Visualizing a robot
An instance of the ‘VRM_Robot’ object is created first. Then, the

‘LoadRobot’ method is used to load one of the available robots,

by passing the name of the robot as the parameter:

The ‘AvailableRobots’ method may be used to query the robot

models that are available for visualization and simulation. The

loaded robot can be displayed in a required joint configuration by

passing the joint angles as a row vector to the ‘DisplayRobot’

method. The angles must be specified in radians:

4.2.2 Forward and Inverse Kinematics
In the forward kinematics simulation, the HTM corresponding to

the robot end-effector is to be determined, and this information is

displayed in the visualization window. The forward kinematic

simulation between any two joint configurations can be performed

after loading a required robot:

The joint trajectory is generated using the ‘jtraj’ method of

Robotics Toolbox, mentioned in Table 1. It calculates and

populates the ‘jointPositionList’ field of the ‘VRM_Robot’ class.

The inverse kinematics problem involves determining the joint

angles of the robot for a given end-effector position and

orientation. The proposed MATLAB class has the ability to

calculate the multiple inverse kinematics solutions (up to 8) for a

valid end-effector pose as per the method presented in [9]. The

inverse kinematics maybe done as:

4.2.3 Cartesian space motion
In Cartesian space motion of the robot, the motion is defined by

specifying the change in the position and orientation of the end-

effector with respect to time. In the ‘VRM_Robot’ class, the robot

end-effector can be moved from one configuration to another,

similar to the point-to-point (PTP) operation available in industrial

robots. The PTP operation along a straight line can be

implemented by calculating the joint angles at every intermediate

point on the straight line path, using inverse kinematics. A smooth

motion can be generated, which can then be visualized:

The input is generally given as a column vector, whose first three

elements describe the end-effector position, and the last three

elements are the Roll-Pitch-Yaw angles describing the orientation

as per [5]. The Cartesian space motion of the robot along with the

MATLAB script is shown in Figure 6.

4.3 Advantages of the VRM_Robot class

The primary advantage of having the ‘VRM_Robot’ class is that

the user can easily load any serial robot model and get started with

basic kinematic simulation and visualization. The ‘SerialLink’

object corresponding to the chosen robot model is automatically

set-up when the ‘VRM_Robot’ class is instantiated, and the user

can access the methods presented in Table 1 to perform the

computations in Robotics Toolbox.

Having a readymade robot object eliminates the need to configure

it manually. The VRM add-in can configure the ‘SerialLink’

object of the Robotics Toolbox by automatically reading the DH

parameters and other robot properties from the XML files. This is

an easy method, especially for beginner level students of robotics

who can get started with readymade functions in Robotics

Toolbox and use VRM for easy visualization.

5. INTEGRATION OF VRM WITH

MICROSOFT EXCEL
VRM can also be used from other COM based clients like MS

Excel, etc. The methods mentioned in Table 2 are accessible for

such applications. When native programs are developed for

research and educational purposes, emphasis is often placed on

the analysis at hand, and visualization has to be programmed

separately. In such cases, the VRM will serve as a useful add-in

for visualization of the robot and its motion, since time need not

be spent on programming the graphics and visualizations. For

COM enabled platforms, the joint values of the robot can be

directly sent to the VRM and the robot configuration can be

visualized using the methods in Table 2.

One such example is shown in Figure 7, where the joint values for

the ABB-IRB-120 robot is provided in the Excel file and the

corresponding robot motion is animated. The robot joint trajectory

was obtained externally and stored in the columns of MS Excel. A

macro can be written in Excel VBA to connect to a VRM

application. The macro reads the values of joint variables for each

time step and sends to VRM to display the corresponding robot

configuration. If the list of joint values is continuously read, then

the motion of the robot can also be seen.

>> robotServer = VRM_Robot () ;

>> robotServer.LoadRobot (‘kukakr5’)

>> robotServer.DisplayRobot ()

>> newRobotJointState = [120 60 45 0 70 120]*pi/180;

>> robotServer.DisplayRobot (newRobotJointState)

>> initialConfig = [120 60 30 60 0 130]*pi/180

>> finalConfig = [-120 90 -45 90 0 -130]*pi/180

>> timesteps = 150;

>> robotServer.ForwardKinematics (initialConfig, finalConfig,

timesteps)

>> eeHTM = [-1, 0, 0, 0.8; 0, 1, 0 0; 0, 0, -1, 1.005; 0, 0, 0, 1] ;

>> robotServer. InverseKinematics (eeHTM)

>> robotServer. CartesianMotionAbsolute ([0.8 -0.4 1 0 0 0]’, [0.8 0.4

1 0 0 pi/2]’)

Figure 6. Visualization of robot motion using VRM in Robotics

Toolbox

MATLAB code for

Cartesian space motion

Trace of EE in VRM

A perceived advantage of the VRM in such cases is that, if a

student or researcher has developed a program for analysis of six-

axis serial chain robots without a visualization module, then the

program can be made as a COM client and VRM can be used for

visualizing the robot model.

6. CONCLUSION

A visualization add-in for serial-chain wrist-partitioned robots

was presented in this paper. The visualizer has been integrated

with the Robotics Toolbox of MATLAB. It is capable of

animating the robot in different configurations, simulating the

forward kinematics, joint-level motions, and motion of the robot

end-effector in the Cartesian space. The Virtual Robots Module

visualizer can also be used as a part of applications like MS Excel,

etc., which can acts as a COM client. The proposed visualizer has

the advantage that, it would allow students and researchers to

obtain easy visualizations of the serial-chain robots and save

precious time which is otherwise spent on programming the

graphics and visualizations. Virtual Robots Module is available

for free from http://www.roboanalyzer.com.

7. ACKNOWLEDGMENTS
The first and third authors would like to acknowledge the

financial support received from the project “Adaptive Force

Control of an Industrial Robot equipped with force-torque

sensor”, sponsored by the BRNS/BARC. The authors sincerely

thank the developer of Robotics Tool Box (RTB), Prof. Peter

Corke of Queensland University of Technology, for his

encouragement to interface RoboAnalyzer with his RTB. His

quick feedback on the contents of this paper is also

acknowledged.

8. REFERENCES
[1] Corke, P., 1996. A Robotics Toolbox for MATLAB. IEEE Robotics

and Automation Magazine, vol. 3 (March 1996), 24-32.

[2] Corke, P., 2007. MATLAB Toolboxes: Robotics and Vision for
Students and Teachers. IEEE Robotics and Automation Magazine,
(December 2007) 16-17.

[3] Rajeevlochana, C. G. and Saha, S. K., 2011. RoboAnalyzer: 3D
Model Based Robotic Learning Software. International Conference
on Multi Body Dynamics, 3-13.

[4] Bahuguna, J., Chittawadigi, R. G., and Saha, S. K., 2013. Teaching
and Learning of Robot Kinematics Using RoboAnalyzer Software.
International Conference on Advances in Robotics.

[5] Sadanand, R., Chittawadigi, R. G., and Saha, S. K., 2013. Virtual
Robot Simulation in RoboAnalyzer. 1st International and 16th
National Conference on Machines and Mechanisms (December
2013).

[6] Denavit, J., and Hartenberg, R. S., 1955. A Kinematic Notation for
Lower pair mechanisms based on Matrices. ASME Journal of
Applied Mechanisms, 22(2), 215 – 221.

[7] Freese, M., et al., 2000. Virtual robot experimentation platform v-
rep: a versatile 3d robot simulator. Simulation, Modeling, and
Programming for Autonomous Robots, Springer Berlin Heidelberg,
51-62.

[8] Quigley, M., et al., 2009. ROS: an open-source Robot Operating
System. ICRA Workshop on Open Source Software, 3(3.2).

[9] Angeles, J., 2002. Fundamentals of robotic mechanical systems, vol.
2. New York, Springer-Verlag.

Figure 7. VRM used as a visualization module for ABB-IRB-120

robot from MS Excel VBA

List of joint values at

various time steps
Visualizing the robot

motion for the given data

http://www.roboanalyzer.com/

